Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Topogr ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060074

RESUMO

PURPOSE: Identify the presence of a dysfunctional electroencephalographic (EEG) pattern in individuals with sickle cell disease (SCD) and hip osteonecrosis, and assess its potential associations with depression, anxiety, pain severity, and serum levels of brain-derived neurotrophic factor (BDNF). METHODS: In this cross-sectional investigation, 24 SCD patients with hip osteonecrosis and chronic pain were matched by age and sex with 19 healthy controls. Resting-state EEG data were recorded using 32 electrodes for both groups. Power spectral density (PSD) and peak alpha frequency (PAF) were computed for each electrode across Delta, Theta, Alpha, and Beta frequency bands. Current Source Density (CSD) measures were performed utilizing the built-in Statistical nonparametric Mapping Method of the LORETA-KEY software. RESULTS: Our findings demonstrated that SCD individuals exhibited higher PSD in delta and theta frequency bands when compared to healthy controls. Moreover, SCD individuals displayed increased CSD in delta and theta frequencies, coupled with decreased CSD in the alpha frequency within brain regions linked to pain processing, motor function, emotion, and attention. In comparison to the control group, depression symptoms, and pain intensity during hip abduction were positively correlated with PSD and CSD in the delta frequency within the parietal region. Depression symptoms also exhibited a positive association with PSD and CSD in the theta frequency within the same region, while serum BDNF levels showed a negative correlation with CSD in the alpha frequency within the left insula. CONCLUSION: This study indicates that individuals with SCD experiencing hip osteonecrosis and chronic pain manifest a dysfunctional EEG pattern characterized by the persistence of low-frequency PSD during a resting state. This dysfunctional EEG pattern may be linked to clinical and biochemical outcomes, including depression symptoms, pain severity during movement, and serum BDNF levels.

2.
Pflugers Arch ; 475(1): 49-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36190562

RESUMO

Nasal respiration influences brain dynamics by phase-entraining neural oscillations at the same frequency as the breathing rate and by phase-modulating the activity of faster gamma rhythms. Despite being widely reported, we still do not understand the functional roles of respiration-entrained oscillations. A common hypothesis is that these rhythms aid long-range communication and provide a privileged window for synchronization. Here we tested this hypothesis by analyzing electrocorticographic (ECoG) recordings in mice, rats, and cats during the different sleep-wake states. We found that the respiration phase modulates the amplitude of cortical gamma oscillations in the three species, although the modulated gamma frequency bands differed with faster oscillations (90-130 Hz) in mice, intermediate frequencies (60-100 Hz) in rats, and slower activity (30-60 Hz) in cats. In addition, our results also show that respiration modulates olfactory bulb-frontal cortex synchronization in the gamma range, in which each breathing cycle evokes (following a delay) a transient time window of increased gamma synchrony. Long-range gamma synchrony modulation occurs during quiet and active wake states but decreases during sleep. Thus, our results suggest that respiration-entrained brain rhythms orchestrate communication in awake mammals.


Assuntos
Ritmo Gama , Respiração , Ratos , Camundongos , Gatos , Animais , Encéfalo , Bulbo Olfatório , Sono , Eletroencefalografia , Mamíferos
3.
Somatosens Mot Res ; 37(4): 245-251, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32597273

RESUMO

PURPOSE: Some studies have explored the relationship between music and cortical activities; however, there are just few studies investigating guitar performance associated with different sensory stimuli. Our aim was to evaluate alpha and beta activity during guitar playing. MATERIALS AND METHOD: Twenty healthy right-handed people participated in this study. Cortical activity was measured by electroencephalogram (EEG) during rest and 4 tasks (1: easy music with an auditory stimulus; 2: easy music with an audiovisual stimulus; 3: complex music with an auditory stimulus; 4: complex music with an audiovisual stimulus). The peak frequency (PF), median frequency (MF) and root mean square (RMS) of alpha and beta EEG signals were assessed. RESULTS: A higher alpha PF at the T3-P3 was observed, and this difference was higher between rest and task 3, rest and task 4, tasks 1 and 3, and tasks 1 and 4. For beta waves, a higher PF was observed at C4-P4 and a higher RMS at C3-C4 and O1-O2. At C4-P4, differences between rest and tasks 2 and 4 were observed. The RMS of beta waves at C3-C4 presented differences between rest and task 3 and at O1-O2 between rest and task 2 and 4. CONCLUSION: The action observation of audiovisual stimuli while playing guitar can increase beta wave activity in the somatosensory and motor cortexes; and increase in the alpha activity in the somatosensory and auditory cortexes and increase in the beta activity in the bilateral visual cortexes during complex music execution, regardless of the stimulus type received. Abbreviations: bpm: beats per minute; C: central; EEG: electroencephalogram; F: frontal; Hz: hertz; LABCOM: Laboratory of Motor Control and Biomechanics; MD: mean difference; MF: median frequency; O: occipital; P: parietal; PF: peak frequency; R: rest; RMS: root mean square; T: temporal; T1: task 1; T2: task 2; T3: task 3; T4: task 4; UFTM: Federal University of Triângulo Mineiro.


Assuntos
Córtex Motor , Música , Eletroencefalografia , Humanos , Descanso
4.
Elife ; 52016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27925581

RESUMO

Phase-amplitude coupling between theta and multiple gamma sub-bands is a hallmark of hippocampal activity and believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit phase-phase coupling, or n:m phase-locking, suggesting an important mechanism of neuronal coding that has long received theoretical support. However, by analyzing simulated and actual LFPs, here we question the existence of theta-gamma phase-phase coupling in the rat hippocampus. We show that the quasi-linear phase shifts introduced by filtering lead to spurious coupling levels in both white noise and hippocampal LFPs, which highly depend on epoch length, and that significant coupling may be falsely detected when employing improper surrogate methods. We also show that waveform asymmetry and frequency harmonics may generate artifactual n:m phase-locking. Studies investigating phase-phase coupling should rely on appropriate statistical controls and be aware of confounding factors; otherwise, they could easily fall into analysis pitfalls.


Assuntos
Ritmo Gama , Hipocampo/fisiologia , Neurônios/fisiologia , Ritmo Teta , Animais , Eletrofisiologia/métodos , Modelos Neurológicos , Ratos
5.
Eur J Neurosci ; 40(11): 3693-703, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288307

RESUMO

The oscillatory activity of hippocampal neuronal networks is believed to play a role in memory acquisition and consolidation. Particular focus has been given to characterising theta (4-12 Hz), gamma (40-100 Hz) and ripple (150-250 Hz) oscillations. Beyond these well-described network states, few studies have investigated hippocampal beta2 (23-30 Hz) activity in vivo and its link to behaviour. A previous sudy showed that the exploration of novel environments may lead to the appearance of beta2 oscillations in the mouse hippocampus. In the present study we characterised hippocampal beta2 oscillations in mice during an object recognition task. We found prominent bursts of beta2 oscillations in the beginning of novel exploration sessions (four new objects), which could be readily observed by spectral analysis and visual inspection of local field potentials. Beta2 modulated hippocampal but not neocortical neurons and its power decreased along the session. We also found increased beta2 power in the beginning of a second exploration session performed 24 h later in a slightly modified environment (two new, two familiar objects), but to a lesser extent than in the first session. However, the increase in beta2 power in the second exploration session became similar to the first session when we pharmacologically impaired object recognition in a new set of experiments performed 1 week later. Our results suggest that hippocampal beta2 activity is associated with a dynamic network state tuned for novelty detection and which may allow new learning to occur.


Assuntos
Ritmo beta/fisiologia , Hipocampo/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Ritmo beta/efeitos dos fármacos , Eletrodos Implantados , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia , Neurônios/fisiologia , Testes Neuropsicológicos , Psicotrópicos/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA