Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447433

RESUMO

The search to deliver added value to industrialized biobased materials, such as cellulose derivatives, is a relevant aspect in the scientific, technological and innovation fields at present. To address these aspects, films of cellulose acetate (CA) and a perylene derivative (Pr) were fabricated using a solution-casting method with two different compositions. Consequently, these samples were exposed to dimethylformamide (DMF) solvent vapors so that its influence on the optical, wettability, and topographical properties of the films could be examined. The results demonstrated that solvent vapor could induce the apparent total or partial preferential orientation/migration of Pr toward the polymer-air interface. In addition, photocatalytic activities of the non-exposed and DMF vapor-exposed films against the degradation of methylene blue (MB) in an aqueous medium using light-emitting diode visible light irradiation were comparatively investigated. Apparently, the observed improvement in the performance of these materials in the MB photodegradation process is closely linked to the treatment with solvent vapor. Results from this study have allowed us to propose the fabrication and use of the improved photoactivity "all-organic" materials for potential applications in dye photodegradation in aqueous media.

2.
Environ Sci Pollut Res Int ; 30(8): 19564-19591, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36645595

RESUMO

The lignocellulose biorefinery industry has assumed an important role within the current scenario. Lignin is an abundant and available biopolymer and one of the compounds present in the lignocellulosic waste. Therefore, processing lignin into new materials and nanomaterials, such as nanolignin, has attracted the attention of the scientific community. Lignin nanoparticles are materials that have excellent properties, such as biodegradability and non-toxicity, and have great potential as chelating agents, antimicrobials agents, UV protectors, nanofillers, adsorbents, catalysts, supercapacitors, emulsion stabilizers, delivered systems, drugs, and gene carriers. This review article covers the emergent scenario of nanolignin and the main aspects of scientific interest, such as the conversion and functionalization of lignin, the valorization of lignocellulose waste, and nanoparticle synthesis. A techno-economic evaluation of the biorefinery model of the nanolignin synthesis is presented based on the simulation of the process on the experimental and commercial databases available and reported by some authors. Finally, the techno-economic assessment is complemented by the life cycle assessment of various nanolignin synthesis pathways reported to evaluate the environmental implications and support this emergent technology development.


Assuntos
Lignina , Nanopartículas , Lignina/metabolismo , Catálise , Biomassa
3.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451212

RESUMO

The side effects and potential impacts on human health by traditional chemical additives as food preservatives (i.e., potassium and sodium salts) are the reasons why novel policies are encouraged by worldwide public health institutes. More natural alternatives with high antimicrobial efficacy to extend shelf life without impairing the cheese physicochemical and sensory quality are encouraged. This study is a comprehensive review of emerging preservative cheese methods, including natural antimicrobials (e.g., vegetable, animal, and protist kingdom origins) as a preservative to reduce microbial cheese contamination and to extend shelf life by several efforts such as manufacturing ingredients, the active ingredient for coating/packaging, and the combination of packaging materials or processing technologies. Essential oils (EO) or plant extracts rich in phenolic and terpenes, combined with packaging conditions and non-thermal methods, generally showed a robust microbial inhibition and prolonged shelf life. However, it impaired the cheese sensory quality. Alternatives including EO, polysaccharides, polypeptides, and enzymes as active ingredients/nano-antimicrobials for an edible film of coating/nano-bio packaging showed a potent and broad-spectrum antimicrobial action during shelf life, preserving cheese quality parameters such as pH, texture, color, and flavor. Future opportunities were identified in order to investigate the toxicological effects of the discussed natural antimicrobials' potential as cheese preservatives.

4.
Sci Total Environ ; 720: 137586, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325583

RESUMO

This study aims to evaluate the life cycle environmental implications of producing fiber-reinforced biocomposite pellets, compared with sugarcane- and petroleum-based polyethylene (PE) pellets. Life Cycle Assessment (LCA) methodology is used to evaluate the production of four types of pellets. LCA allows the evaluation of the benefits of improving the production of biobased materials by replacing part of the sugarcane bioPE with bagasse fibers. The functional unit selected was the production of 1 kg of plastic pellets. Primary data were collected from laboratory tests designed to obtain pulp fibers from bagasse and mix them with sugarcane bioPE. Two processes were studied to obtain fibers from bagasse: soda fractionation and hot water-soda fractionation. The results from the LCA show environmental improvements when reducing the amount of bioPE by replacing it with bagasse fibers in the categories of global warming, ozone formation, terrestrial acidification and fossil resource scarcity, when comparing to 100% sugarcane bioPE, and a reduction in global warming and fossil resource scarcity when compared to fossil-based PE. In contrast, results also indicate that there could be higher impacts in terms of ozone formation, freshwater eutrophication, and terrestrial acidification. Even though biocomposites result as a preferred option to bioPE, several challenges need to be overcome before a final recommendation is placed. The sensitivity analysis showed the importance of the energy source on the impacts of the processing of fibers. Thus, using clean energy to produce biobased materials may reduce the impacts related to the production stage. These results are intended to increase the attention of the revalorization of these residues and their application to generate more advanced materials. Further outlook should also consider a deeper evaluation of the impacts during the production of a plastic object and possible effects of the biobased materials during final disposal.


Assuntos
Saccharum , Celulose , Eutrofização , Aquecimento Global
5.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168751

RESUMO

There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with high promising properties for the development of biodegradable materials, while milk and water kefir grains, composed by kefiran and dextran, respectively, produce films with very good optical and mechanical properties. The reasons for considering microbial cellulose as an attractive biobased material are the conformational structure and enhanced properties compared to plant cellulose. Kombucha tea, a probiotic fermented sparkling beverage, produces a floating membrane that has been identified as bacterial cellulose as a side stream during this fermentation. The results shown in this review demonstrated the good performance of microbial biomass to form new materials, with enhanced functional properties for different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA