RESUMO
Psychological capital (PsyCap) constitutes a positive personal resource that enhances better well-being and academic performance in university students. Initially addressed in the organizational realm and recently in the academic one. This study aimed to establish the differences in PsyCap according to gender and age in Peruvian university students. A quantitative, comparative, non-experimental, and cross-sectional study was conducted with 708 students (77.4 % women and 22.6 % men), aged between 18 and 61 years (M = 22.1; SD = 5.95), selected in a non-probabilistic manner, who completed the Psychological Capital Questionnaire (PCQ-12). The results indicate very strong evidence supporting the existence of significant differences between different age groups, suggesting that the observed variations are not due to chance but reflect real differences between ages. Regarding gender, the data do not provide enough information to confidently assert whether there are significant differences between men and women in relation to psychological capital (PsyCap) and its dimensions. This implies that we cannot confirm whether gender influences these variables. These findings highlight the need to consider age when assessing and intervening in PsyCap in university students.
RESUMO
The Non-Informative Nuisance Parameter Principle concerns the problem of how inferences about a parameter of interest should be made in the presence of nuisance parameters. The principle is examined in the context of the hypothesis testing problem. We prove that the mixed test obeys the principle for discrete sample spaces. We also show how adherence of the mixed test to the principle can make performance of the test much easier. These findings are illustrated with new solutions to well-known problems of testing hypotheses for count data.
RESUMO
Given the limitations of frequentist method for null hypothesis significance testing, different authors recommend alternatives such as Bayesian inference. A poor understanding of both statistical frameworks is common among clinicians. The present is a gentle narrative review of the frequentist and Bayesian methods intended for physicians not familiar with mathematics. The frequentist p-value is the probability of finding a value equal to or higher than that observed in a study, assuming that the null hypothesis (H0) is true. The H0 is rejected or not based on a p threshold of 0.05, and this dichotomous approach does not express the probability that the alternative hypothesis (H1) is true. The Bayesian method calculates the probability of H1 and H0 considering prior odds and the Bayes factor (Bf). Prior odds are the researcher's belief about the probability of H1, and the Bf quantifies how consistent the data is concerning H1 and H0. The Bayesian prediction is not dichotomous but is expressed in continuous scales of the Bf and of the posterior odds. The JASP software enables the performance of both frequentist and Bayesian analyses in a friendly and intuitive way, and its application is displayed at the end of the paper. In conclusion, the frequentist method expresses how consistent the data is with H0 in terms of p-values, with no consideration of the probability of H1. The Bayesian model is a more comprehensive prediction because it quantifies in continuous scales the evidence for H1 versus H0 in terms of the Bf and the
Dadas las limitaciones del método de significancia frecuentista basado en la hipótesis nula, diferentes autores recomiendan alternativas como la inferencia bayesiana. Es común entre los médicos una comprensión deficiente de ambos marcos estadísticos. Esta es una revisión narrativa amigable de los métodos frecuentista y bayesiano dirigida quienes no están familiarizados con las matemáticas. El valor de p frecuentista es la probabilidad de encontrar un valor igual o superior al observado en un estudio, asumiendo que la hipótesis nula (H0) es cierta. La H0 se rechaza o no con base en un umbral p de 0.05, y este enfoque dicotómico no expresa la probabilidad de que la hipótesis alternativa (H1) sea verdadera. El método bayesiano calcula la probabilidad de H1 y H0 considerando las probabilidades a priori y el factor de Bayes (fB). Las probabilidades a priori son la creencia del investigador sobre la probabilidad de H1, y el fB cuantifica cuán consistentes son los datos con respecto a H1 y H0. La predicción bayesiana no es dicotómica, sino que se expresa en escalas continuas del fB y de las probabilidades a posteriori. El programa JASP permite realizar análisis frecuentista y bayesiano de una forma simple e intuitiva, y su aplicación se muestra al final del documento. En conclusión, el método frecuentista expresa cuán consistentes son los datos con H0 en términos de valores p, sin considerar la probabilidad de H1. El modelo bayesiano es una predicción más completa porque cuantifica en escalas continuas la evidencia de H1 versus H0 en términos del fB y de las probabilidades a posteriori.
Assuntos
Humanos , Testes de Hipótese , Teorema de Bayes , Histonas , UrologistasRESUMO
The present paper proposes and demonstrates a method for assessing strength of evidence when an earwitness claims to recognize the voice of a speaker who is familiar to them. The method calculates a Bayes factor that answers the question: What is the probability that the earwitness would claim to recognize the offender as the suspect if the offender was the suspect versus what is the probability that the earwitness would claim to recognize the offender as the suspect if the offender was not the suspect but some other speaker from the relevant population? By "claim" we mean a claim made by a cooperative earwitness not a claim made by an earwitness who is intentionally deceptive. Relevant data are derived from naïve listeners' responses to recordings of familiar speakers presented in a speaker lineup. The method is demonstrated under recording conditions that broadly reflect those of a real case.
RESUMO
Coalescent-based algorithms coupled with the access to genome-wide data have become powerful tools for assessing questions on recent or rapid diversification, as well as delineating species boundaries in the absence of reciprocal monophyly. In southern South America, the diversification of Liolaemus lizards during the Pleistocene is well documented and has been attributed to the climatic changes that characterized this recent period of time. Past climatic changes had harsh effects at extreme latitudes, including Patagonia, but habitat changes at intermediate latitudes of South America have also been recorded, including expansion of sand fields over northern Patagonia and Pampas). In this work, we apply a coalescent-based approach to study the diversification of the Liolaemus wiegmannii species complex, a morphologically conservative clade that inhabits sandy soils across northwest and south-central Argentina, and the south shores of Uruguay. Using four standard sequence markers (mitochondrial DNA and three nuclear loci) along with ddRADseq data we inferred species limits and a time-calibrated species tree for the L. wiegmannii complex in order to evaluate the influence of Quaternary sand expansion/retraction cycles on diversification. We also evaluated the evolutionary independence of the recently described L. gardeli and inferred its phylogenetic position relative to L. wiegmannii. We find strong evidence for six allopatric candidate species within L. wiegmannii, which diversified during the Pleistocene. The Great Patagonian Glaciation (â¼1 million years before present) likely split the species complex into two main groups: one composed of lineages associated with sub-Andean sedimentary formations, and the other mostly related to sand fields in the Pampas and northern Patagonia. We hypothesize that early speciation within L. wiegmannii was influenced by the expansion of sand dunes throughout central Argentina and Pampas. Finally, L. gardeli is supported as a distinct lineage nested within the L. wiegmannii complex.
Assuntos
Algoritmos , Lagartos/classificação , Animais , Argentina , Teorema de Bayes , Citocromos b/genética , DNA Mitocondrial/genética , Loci Gênicos , Variação Genética , Genoma , Geografia , Lagartos/genética , Filogenia , Análise de Componente Principal , Especificidade da Espécie , Fatores de Tempo , UruguaiRESUMO
Determining the boundaries between species and deciding when to describe new species are challenging practices that are particularly difficult in groups with high levels of geographic variation. The coast horned lizards (Phrynosoma blainvillii, Phrynosoma cerroense and P. coronatum) have an extensive geographic distribution spanning many distinctive ecological regions ranging from northern California to the Cape Region of Baja California, Mexico, and populations differ substantially with respect to external morphology across much of this range. The number of taxa recognized in the group has been reevaluated by herpetologists over 20 times during the last 180 years, and typically without the aid of explicit species delimitation methods, resulting in a turbulent taxonomy containing anywhere from one to seven taxa. In this study, we evaluate taxonomic trends through time by ranking 15 of these species delimitation models (SDMs) using coalescent analyses of nuclear loci and SNPs in a Bayesian model comparison framework. Species delimitation models containing more species were generally favoured by Bayesian model selection; however, several three-species models outperformed some four- and five-species SDMs, and the top-ranked model, which contained five species, outperformed all SDMs containing six species. Model performance peaked in the 1950s based on marginal likelihoods estimated from nuclear loci and SNPs. Not surprisingly, SDMs based on genetic data outperformed morphological taxonomies when using genetic data alone to evaluate models. The de novo estimation of population structure favours a three-population model that matches the currently recognized integrative taxonomy containing three species. We discuss why Bayesian model selection might favour models containing more species, and why recognizing more than three species might be warranted.
Assuntos
Classificação , Ecologia , Lagartos/genética , Filogenia , Animais , Genoma/genética , Genômica , Lagartos/classificação , México , Especificidade da EspécieRESUMO
House flies are one of the best known groups of flies and comprise about 5000 species worldwide. Despite over a century of intensive taxonomic research on these flies, classification of the Muscidae is still poorly resolved. Here we brought together the most diverse molecular dataset ever examined for the Muscidae, with 142 species in 67 genera representing all tribes and all biogeographic regions. Four protein coding genes were analyzed: mitochondrial CO1 and nuclear AATS, CAD (region 4) and EF1-α. Maximum likelihood and Bayesian approaches were used to analyze five different partitioning schemes for the alignment. We also used Bayes factors to test monophyly of the traditionally accepted tribes and subfamilies. Most subfamilial taxa were not recovered in our analyses, and accordingly monophyly was rejected by Bayes factor tests. Our analysis consistently found three main clades of Muscidae and so we propose a new classification with only three subfamilies without tribes. Additionally, we provide the first timeframe for the diversification of all major lineages of house flies and examine contemporary biogeographic hypotheses in light of this timeframe. We conclude that the muscid radiation began in the Paleocene to Eocene and is congruent with the final stages of the breakup of Gondwana, which resulted in the complete separation of Antarctica, Australia, and South America. With this newly proposed classification and better understanding of the timing of evolutionary events, we provide new perspectives for integrating morphological and ecological evolutionary understanding of house flies, their taxonomy, phylogeny, and biogeography.
Assuntos
Muscidae/classificação , Muscidae/genética , Filogenia , Animais , Regiões Antárticas , Austrália , Teorema de Bayes , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Moscas Domésticas/classificação , Moscas Domésticas/genética , Proteínas de Insetos/genética , Fator 1 de Elongação de Peptídeos/genética , Filogeografia , Análise de Sequência de DNA , América do SulRESUMO
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
RESUMO
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
RESUMO
One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.
O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.
RESUMO
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
RESUMO
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.
RESUMO
The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.
Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.