RESUMO
Coral Ba/Ca is a proxy for seawater barium concentration that varies with upwelling, terrigenous input, and marine productivity whereas coral Sr/Ca varies with temperature. We examine monthly coral Ba/Ca and Sr/Ca before and during offshore oil exploration in a Siderastrea siderea coral from West Flower Garden Bank located on the continental shelf edge in the Gulf of Mexico. Coral Ba/Ca variations lack pulses driven by upwelling or river outflow and are not in sync with coral Sr/Ca that exhibit a different seasonal pattern. Seasonal variations in chlorophyll-a concentration negatively correlate with coral Ba/Ca explaining 25% of that variability. A significant increase in mean coral Ba/Ca of 1.76 µmol/mol between 1931-1944 and 1976-2004 corresponds to the increase in the United States barite production and consumption primarily used in offshore oil drilling, which escalated in the 1970s, suggesting oil drilling operations are increasing seawater Ba concentration in the Gulf of Mexico.
Assuntos
Antozoários , Animais , Bário/análise , Recifes de Corais , Golfo do México , Rios , Água do MarRESUMO
Panamá's extreme hydroclimate seasonality is driven by Intertropical Convergence Zone rainfall and resulting runoff. River discharge (Q) carries terrestrially-derived barium to coastal waters that can be recorded in coral. We present a Ba/Ca record (1996-1917) generated from a Porites coral colony in the Gulf of Chiriquí near Coiba Island (Panamá) to understand regional hydroclimate. Here coral Ba/Ca is correlated to instrumental Q (R=0.67, p<0.001), producing a seasonally-resolved Reduced Major Axis regression of Ba/Ca (µmol/mol)=Q (m3/s)×0.006±0.001 (µmol/mol)(m3/s)-1+4.579±0.151. Our results support work in the neighboring Gulf of Panamá that determined seawater Ba/Ca, controlled by Q, is correlated to coral Ba/Ca (LaVigne et al., 2016). Additionally, the Coiba coral Ba/Ca records at least 5 El Niño events and identified 22 of the 37 wet seasons with below average precipitation. These data corroborate the Q proxy and provide insight into the use of coral Ba/Ca as an El Niño and drought indicator.