Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Acta Crystallogr C Struct Chem ; 73(Pt 9): 667-673, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28872062

RESUMO

After reporting the structure of a new polymorph of 1,3,5-trifluoro-2,4,6-triiodobenzene (denoted BzF3I3), C6F3I3, (I), which crystallized in the space group P21/c, we perform a comparative analysis with the already reported P21/n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12, 2222-2234]. In polymorph (II), type-II I...I halogen bonds and I...π interactions connect molecules in such a way that a three-dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type-II I...I halogen bonds and π-π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).

2.
J Mol Graph Model ; 76: 181-191, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28734206

RESUMO

Flavonoids are a large group of polyphenolic compounds ubiquitously present in plants. They are important components of human diet. They are recognized as potential drug candidates to be used in the treatment and prevention of a lot of pathological disorders, due to their protective effects. Baicalin (7-glucuronic acid 5, 6-dihydroxyflavone) is one of the main single active constituents isolated from the dried roots of Scutellaria baicalensis Georgi. The great interest on this flavonoid is due to its various pharmacological properties, such as antioxidant, antimicrobial, anti-inflammatory, anticancer and so on, and its high accumulation in the roots of S. baicalensis. The aim of our work was to analyze the geometric and electronic properties of baicalin conformers (BCL), thus performing a complete search on the conformational space of this flavonoid in gas phase and in aqueous solution. The results indicate that the conformational space of baicalin is formed by eight conformers in gas phase and five conformers in aqueous solution optimized at B3LYP/6-311++G** theory level. BCLa2TT and BCLa1TT conformers have low stability in gas phase and very high stability in aqueous solution. This variation is related to a modification in the τ1 angle that represents the relative position of the glucuronide unit respect to the central rings of the flavan nucleus (A and C). This modification was successfully explained by examining the changes in the hydrogen bond (HB) interactions that occur in the region around the hydroxyl group located in position 6 of ring A. Besides, the molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses indicate that BCLa2TT and BCLa1TT conformers are the most favorable conformers for interacting with positively charged species (such as metal ions) in aqueous media (such as biological fluids).


Assuntos
Flavonoides/química , Glucuronídeos/química , Ligação de Hidrogênio , Conformação Molecular , Extratos Vegetais/química , Scutellaria baicalensis/química , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA