Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 174771, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009154

RESUMO

Over the last century, the Atacama Desert has been exploited due to the mineral resources in this environment. These anthropogenic effects have primarily been linked to the development of the mining industry, the impact of which remains uncertain. Here, we use high-resolution geochemical characterization and magnetic properties analysis from the sedimentary core of Inka Coya Lake, located in the Atacama Desert, to assess the anthropogenic impact in this metallogenic region. The geochemistry and magnetic properties changed with core depth. Elements, such as Cu, Ni, and Zn, increased during the lake's most recent period. Additionally, an increase in mass magnetic susceptibility (χ) and a decrease in magnetic susceptibility depending on the frequency (χfd%) may be attributed to fine iron oxide grains originating from industrial and urban sources. Moreover, indices of pollution classified the sediment of Inka Coya Lake as slightly polluted and strongly polluted with Ni, and Cu, respectively. This could reflect a period of pollution caused by the increase in the production of copper sulfide. These results highlight the possible impact of mining activities in the hyper-arid core of the Atacama Desert, which affects surrounding areas through dispersive processes, even reaching high altitudes, and provides a scientific basis for the prevention of environmental pollution from mining and the protection of the sediment and water source in the Atacama Desert.

2.
Med Vet Entomol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039827

RESUMO

Among mammals, bats harbour the greatest taxonomic diversity of ectoparasitic arthropods. This is mainly due to their high mobility, wide distribution range and gregarious social behaviour. In Chile, 17 species of bats have been reported; however, their ectoparasitic arthropofauna has been little studied. There are currently 12 taxa recorded, belonging to two classes and associated with only four species of bats. This study aimed to investigate the diversity of parasitic flies associated with bats in three ecoregions: Atacama Desert, Chilean Matorral and Valdivian temperate forest. During 2021, using mist nets, bats were captured in Anzota caves (Atacama Desert ecoregion), Huelquén and Alto Jahuel (Chilean Matorral ecoregion), Cherquenco and San Patricio (Valdivian temperate forest). Each bat was carefully checked during a 15-min interval for the collection of ectoparasites. The arthropods were deposited in vials with 96% ethanol. A total of 26 bats corresponding to three species (Vespertilionidae: Histiotus magellanicus Philippi, 1866, Myotis arescens (Osgood, 1943); Phyllostomidae: Desmodus rotundus (Geoffroy, 1810)) were captured from which a total of 142 ectoparasitic arthropods were collected. Bat flies were separated/identified under a stereomicroscope. Additionally, from the fieldwork, we report the presence of other ectoparasites associated with Chilean bats. In our study, we report new host-parasite associations between Trichobius parasiticus Gervais, 1844 (Diptera: Streblidae) on D. rotundus, and Basilia silvae (Brèthes, 1913) (Diptera: Nycteribiidae) in M. arescens in Chile. Our study extended the latitudinal range of distribution for B. silvae to Araucanía region, and we report for first time T. parasiticus in the country. Additionally, partial sequences of the cytochrome c oxidase I gene were obtained from these specimens. Although there is slight morphological variation in the specimens of T. parasiticus, phylogenetic analyses suggest that they correspond to the same species. The sequences generated for B. silvae represent the first for the species. Authors recommend the use of an integrative approach in the identification of ectoparasites in poorly studied ecoregions and hosts. The integration of different markers is necessary to determine more precisely the phylogenetic relationships between South American populations and species of the genera Basilia and Trichobius.

3.
Microorganisms ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930576

RESUMO

Living in arid environments presents unique challenges to organisms, including limited food and water, extreme temperatures, and UV exposure. Reptiles, such as the South American leaf-toed gecko (Phyllodactylus gerrhopygus), have evolved remarkable adaptations to thrive in such harsh conditions. The gut microbiome plays a critical role in host adaptation and health, yet its composition remains poorly characterized in desert reptiles. This study aimed to characterize the composition and abundance of the gut microbiome in P. gerrhopygus inhabiting the hyperarid Atacama Desert, taking into account potential sex differences. Fecal samples from adult female and male geckos were analyzed by 16S rRNA gene amplicon sequencing. No significant differences in bacterial alpha diversity were observed between the sexes. However, the phylum Bacteroidota was more abundant in females, while males had a higher Firmicutes/Bacteroidota ratio. The core microbiome was dominated by the phyla Bacteroidota, Firmicutes, and Proteobacteria in both sexes. Analysis of bacterial composition revealed 481 amplicon sequence variants (ASVs) shared by female and male geckos. In addition, 108 unique ASVs were exclusive to females, while 244 ASVs were unique to males. Although the overall bacterial composition did not differ significantly between the sexes, certain taxa exhibited higher relative abundances in each sex group. This study provides insight into the taxonomic structure of the gut microbiome in a desert-adapted reptile and highlights potential sex-specific differences. Understanding these microbial communities is critical for elucidating the mechanisms underlying host resilience in Earth's most arid environments, and for informing conservation efforts in the face of ongoing climate change.

4.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38761112

RESUMO

The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.


Assuntos
Camelídeos Americanos , Animais , Camelídeos Americanos/genética , Ecossistema , Clima Desértico , Adaptação Fisiológica/genética , Genoma , Variação Genética , Regiões Antárticas , América do Sul , Evolução Molecular
5.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664270

RESUMO

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Assuntos
Clima Desértico , Ambientes Extremos , Oxirredução , Percloratos , Percloratos/metabolismo , Metagenoma , Microbiota
6.
Proc Natl Acad Sci U S A ; 121(18): e2320506121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648488

RESUMO

In deserts, water has been singled out as the most important factor for choosing where to settle, but trees were likely an important part of the landscape for hunter-gatherers beyond merely constituting an economic resource. Yet, this critical aspect has not been considered archaeologically. Here, we present the results of mapping and radiocarbon dating of a truly unique archaeological record. Over 150 preserved stumps around five Late Pleistocene/Early Holocene archaeological campsites (12,800 to 11,200 cal BP) show that trees were key features in the creation of everyday habitats for the first inhabitants of the Atacama Desert. At two of these sites, QM12 and QM35, the spatial and chronological correlation between trees and hearths reveals that people located their homes under the tree canopy. At residential site QM35, artifact distribution coincides with a grove dated to ~11,600 to 11,200 cal BP. A third residential area (QM32) occurred along the grove margins ~12,000 to 11,200 cal BP. Based on the distinct cultural material of these two camps, we propose that two different groups intermittently shared this rich wetland-grove environment. The tree taxa suggest a preference for the native Schinus molle, a tree scarcely present on the landscape today, over the endemic, nitrogen-fixing Strombocarpa tamarugo, both for toolmaking and firewood and even though the S. tamarugo was locally more abundant. Together with the spatial and chronological coincidence of campsites, hearths, and trees, we propose that people spared the most abundant and resilient species to create their homes, in turn promoting fertility oases amid the Atacama's hyperaridity.


Assuntos
Arqueologia , Clima Desértico , Árvores , Humanos , História Antiga , Ecossistema , Datação Radiométrica , Chile
7.
J Exp Bot ; 75(11): 3596-3611, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38477678

RESUMO

The best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (sister species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.


Assuntos
Clima Desértico , Filogenia , Transcriptoma , Chile , Adaptação Fisiológica , Redes e Vias Metabólicas
8.
Front Public Health ; 12: 1221731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444444

RESUMO

Chile is unique because of its diverse extreme environment, ranging from arid climates in the north to polar climates in Patagonia. Microorganisms that live in these environments are called extremophiles, and these habitats experience intense ecosystem changes owing to climate warming. Most studies of extremophiles have focused on their biotechnological potential; however, no study has examined how students describe extremophiles. Therefore, we were interested in answering the following question: How do schoolchildren living in extreme environments describe their environments and extremophiles? We performed an ethnographic study and analyzed the results of 347 representative drawings of participants aged 12-16 years from three schools located in the extreme environments of Chile San Pedro de Atacama (hyper-arid, 2,400 m), Lonquimay (forest, 925 m), and Punta Arenas (sub-Antarctic, 34 m). The social representation approach was used to collect data, and systemic networks were used to organize and systematize the drawings. The study found that, despite differences between extreme environments, certain natural elements, such as trees and the sun, are consistently represented by schoolchildren. The analysis revealed that the urban and rural categories were the two main categories identified. The main systemic networks were rural-sun (21,1%) for hyper-arid areas, urban-tree (14,1%) for forest areas, and urban-furniture (23,4%) for sub-Antarctic areas. When the results were analyzed by sex, we found a statistically significant difference for the rural category in the 7th grade, where girls mentioned being more rural than boys. Students living in hyper-arid areas represented higher extremophile drawings, with 57 extremophiles versus 20 and 39 for students living in sub-Antarctic and forest areas, respectively. Bacteria were extremophiles that were more represented. The results provide evidence that natural variables and semantic features that allow an environment to be categorized as extreme are not represented by children when they are focused on and inspired by the environment in which they live, suggesting that school literacy processes impact representations of their environment because they replicate school textbooks and not necessarily their environment.


Assuntos
Extremófilos , Masculino , Criança , Feminino , Humanos , Chile , Ecossistema , Ambientes Extremos , Biotecnologia , Árvores
9.
Microorganisms ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543524

RESUMO

The northern region of Chile boasts unique geographical features that support the emergence of geothermal effluents, salt lagoons, and coastal creeks. These extreme climate conditions create polyextreme habitats for microorganisms, particularly adapted to survive these harsh environments. These extremophilic microorganisms hold immense potential as a source of hydrolytic enzymes, among other biotechnological applications. In this study, we isolated 15 strains of aerobic thermophilic bacteria (45-70 °C) from sediment samples collected at five different ecological sites, including hot springs, geothermal fields, and lagoons in the Atacama Desert and Andes high planes. Analyses of the 16S rRNA gene sequences of the isolates showed a close genetic similarity (98-100%) with microorganisms of the genera Parageobacillus, Geobacillus, Anoxybacillus, and Aeribacillus. Notably, these thermophiles exhibited significant hydrolytic enzyme activity, particularly amylases, lipases, and proteases. These findings underscore the potential of using these thermophilic bacterial strains as an invaluable source of thermozymes with wide-ranging applications in diverse industries, such as detergent formulations, pharmaceutical processing, and food technology. This research highlights the ecological significance of these extreme environments in the Atacama Desert and Andes high plains, which serve as vital ecological niches housing extremophilic bacteria as a genetic source of relevant thermozymes, promising great potential for innovation in the biotechnology industry.

10.
Sci Total Environ ; 915: 169988, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38211857

RESUMO

Monitoring and understanding of water resources have become essential in designing effective and sustainable management strategies to overcome the growing water quality challenges. In this context, the utilization of unsupervised learning techniques for evaluating environmental tracers has facilitated the exploration of sources and dynamics of groundwater systems through pattern recognition. However, conventional techniques may overlook spatial and temporal non-linearities present in water research data. This paper introduces the adaptation of FlowSOM, a pioneering approach that combines self-organizing maps (SOM) and minimal spanning trees (MST), with the fast-greedy network clustering algorithm to unravel intricate relationships within multivariate water quality datasets. By capturing connections within the data, this ensemble tool enhances clustering and pattern recognition. Applied to the complex water quality context of the hyper-arid transboundary Caplina/Concordia coastal aquifer system (Peru/Chile), the FlowSOM network and clustering yielded compelling results in pattern recognition of the aquifer salinization. Analyzing 143 groundwater samples across eight variables, including major ions, the approach supports the identification of distinct clusters and connections between them. Three primary sources of salinization were identified: river percolation, slow lateral aquitard recharge, and seawater intrusion. The analysis demonstrated the superiority of FlowSOM clustering over traditional techniques in the case study, producing clusters that align more closely with the actual hydrogeochemical pattern. The outcomes broaden the utilization of multivariate analysis in water research, presenting a comprehensive approach to support the understanding of groundwater systems.

11.
Glob Chang Biol ; 30(1): e17068, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273559

RESUMO

Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soil δ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.


Assuntos
Fósforo , Solo , Isótopos de Oxigênio , Água , Chile , Clima Desértico
12.
New Phytol ; 241(3): 1074-1087, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984856

RESUMO

Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.


Assuntos
Biodiversidade , Cactaceae , Dispersão Vegetal , Temperatura , Plantas/genética , Clima Desértico
13.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059605

RESUMO

Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.


Assuntos
Fabaceae , Micromonospora , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Análise de Sequência de DNA , Chile , Filogenia , Rizosfera , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases
14.
Plants (Basel) ; 12(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068652

RESUMO

Excess energy derived from photosynthesis can be used in plant microbial fuel cell (PMFC) systems as a sustainable alternative for the generation of electricity. In this study, the in situ performance of CAM (Crassulacean acid metabolism) plants in Calama, in the Atacama Desert, was evaluated for energy recovery using PMFCs with stainless steel AISI 316L and Cu as electrodes. The plant species evaluated included Aloe perfoliata, Cereus jamacaru, Austrocylindropuntia subulata, Agave potatorum, Aloe arborescens, Malephora crocea, and Kalanchoe daigremontiana. Among the plant species, Kalanchoe daigremontiana demonstrated significant potential as an in situ PMFC, showing a maximum cell potential of 0.248 V and a minimum of 0.139 V. In addition, the cumulative energy for recovery was about 9.4 mWh m-2 of the electrode. The use of CAM plants in PMFCs presents a novel approach for green energy generation, as these plants possess an inherent ability to adapt to arid environments and water-scarce areas such as the Atacama Desert climate.

16.
Zool Stud ; 62: e44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941796

RESUMO

Desert aquatic species tend to show isolated and disconnected populations due to the fragmented nature of their environment; however, the morphology of the hydrographic basins, added to humid climatic conditions, can allow dispersion between populations in a desert environment. The aim of this study was to examine the influence of drainage morphology on the phylogeographic structure and gene flow (using a fragment of the mitochondrial control region and seven microsatellite markers) of an endemic taxon of the Andean Precordillera in the Atacama Desert, the aquatic frog species Telmatobius pefauri. We detected three genetic clusters, one cluster present in the Lluta basin and two clusters in the Azapa basin. The results suggest that the genetic structure of T. pefauri is influenced by the morphology of the drainage network formed by the Lluta and Azapa basins: localities present in the same drainage, Tignamar River, were less differentiated and showed higher gene flow levels among them than to their conspecifics belonging to the other drainage in the same basin, Seco River, and those belonging to the other basin, Lluta basin. Gene flow patterns and genetic structure to populations Atacama Andean aquatic taxa would be influenced by basin morphology, with dispersion being stimulated in dendritic hydrological systems, and eventually by humid climatic (regional) events.

17.
Front Microbiol ; 14: 1202266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779711

RESUMO

The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.

18.
Astrobiology ; 23(12): 1284-1302, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856168

RESUMO

We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary In Situ Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement. Biosignatures were detected in basin samples collected at depths ranging from 20 to 80 cm but were not detected in the surrounding area. Subsurface stratigraphy of the units drilled was interpreted from drill sensor data as fine-scale layers of sand/clay sediments interspersed with layers of harder material in the basins and a uniform subsurface composed of course-to-fine sand in the surroundings. The mission timeline and number of commands sent to accomplish each activity were tracked. The deepest sample collected (80 cm) required 55 commands, including drilling and delivery to three instruments. Elapsed time required for drilling and sample handling was less than 3 hours to collect sample from 72 cm depth, including time devoted to recovery from a jammed drill. The experiment demonstrated drilling, sample transfer technologies, and instruments that accomplished successful detection of biomolecular evidence of life in one of the most biologically sparse environments on Earth.


Assuntos
Exobiologia , Marte , Robótica , Chile , Planetas , Areia , Água
19.
Plants (Basel) ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37653935

RESUMO

Irrigated agriculture is responsible for a third of global agricultural production, but the overuse of water resources and intensification of farming practices threaten its sustainability. The use of saline water in irrigation has become an alternative in areas subjected to frequent drought, but this practice affects plant growth due to osmotic impact and excess of ions. Plant-growth-promoting rhizobacteria (PGPR) can mitigate the negative impacts of salinity and other abiotic factors on crop yields. Actinobacteria from the hyper-arid Atacama Desert could increase the plant tolerance to salinity, allowing their use as biofertilizers for lettuce crops using waters with high salt contents. In this work, rhizosphere samples of halophytic Metharme lanata were obtained from Atacama Desert, and actinobacteria were isolated and identified by 16S gene sequencing. The PGPR activities of phosphate solubilization, nitrogen fixation, and the production of siderophore and auxin were assessed at increasing concentrations of NaCl, as well as the enhancement of salt tolerance in lettuce plants irrigated with 100 mM of NaCl. Photosynthesis activity and chlorophyll content, proline content, lipid peroxidation, cation and P concentration, and the identification and quantification of phenolic compounds were assessed. The strains S. niveoruber ATMLC132021 and S. lienomycini ATMLC122021 were positive for nitrogen fixation and P solubilization activities and produced auxin up to 200 mM NaCl. In lettuce plants, both strains were able to improve salt stress tolerance by increasing proline contents, carotenoids, chlorophyll, water use efficiency (WUE), stomatal conductance (gs), and net photosynthesis (A), concomitantly with the overproduction of the phenolic compound dicaffeoylquinic acid. All these traits were positively correlated with the biomass production under saltwater irrigation, suggesting its possible use as bioinoculants for the agriculture in areas where the water resources are scarce and usually with high salt concentrations.

20.
Front Microbiol ; 14: 1197399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538842

RESUMO

Plant-microbiota interactions have significant effects on plant growth, health, and productivity. Rhizosphere microorganisms are involved in processes that promote physiological responses to biotic and abiotic stresses in plants. In recent years, the interest in microorganisms to improve plant productivity has increased, mainly aiming to find promising strains to overcome the impact of climate change on crops. In this work, we hypothesize that given the desertic environment of the Antarctic and the Atacama Desert, different plant species inhabiting these areas might share microbial taxa with functions associated with desiccation and drought stress tolerance. Therefore, in this study, we described and compared the composition of the rhizobacterial community associated with Deschampsia antarctica (Da), Colobanthus quitensis (Cq) from Antarctic territories, and Croton chilensis (Cc), Eulychnia iquiquensis (Ei) and Nicotiana solanifolia (Ns) from coastal Atacama Desert environments by using 16S rRNA amplicon sequencing. In addition, we evaluated the putative functions of that rhizobacterial community that are likely involved in nutrient acquisition and stress tolerance of these plants. Even though each plant microbial rhizosphere presents a unique taxonomic pattern of 3,019 different sequences, the distribution at the genus level showed a core microbiome with a higher abundance of Haliangium, Bryobacter, Bacillus, MND1 from the Nitrosomonadaceae family, and unclassified taxa from Gemmatiamonadaceae and Chitinophagaceae families in the rhizosphere of all samples analyzed (781 unique sequences). In addition, species Gemmatirosa kalamazoonesis and Solibacter usitatus were shared by the core microbiome of both Antarctic and Desert plants. All the taxa mentioned above had been previously associated with beneficial effects in plants. Also, this microbial core composition converged with the functional prediction related to survival under harsh conditions, including chemoheterotrophy, ureolysis, phototrophy, nitrogen fixation, and chitinolysis. Therefore, this study provides relevant information for the exploration of rhizospheric microorganisms from plants in extreme conditions of the Atacama Desert and Antarctic as promising plant growth-promoting rhizobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA