RESUMO
Currently, the number of vehicles in circulation continues to increase steadily, leading to a parallel increase in vehicular accidents. Among the many causes of these accidents, human factors such as driver drowsiness play a fundamental role. In this context, one solution to address the challenge of drowsiness detection is to anticipate drowsiness by alerting drivers in a timely and effective manner. Thus, this paper presents a Convolutional Neural Network (CNN)-based approach for drowsiness detection by analyzing the eye region and Mouth Aspect Ratio (MAR) for yawning detection. As part of this approach, endpoint delineation is optimized for extraction of the region of interest (ROI) around the eyes. An NVIDIA Jetson Nano-based device and near-infrared (NIR) camera are used for real-time applications. A Driver Drowsiness Artificial Intelligence (DD-AI) architecture is proposed for the eye state detection procedure. In a performance analysis, the results of the proposed approach were compared with architectures based on InceptionV3, VGG16, and ResNet50V2. Night-Time Yawning-Microsleep-Eyeblink-Driver Distraction (NITYMED) was used for training, validation, and testing of the architectures. The proposed DD-AI network achieved an accuracy of 99.88% with the NITYMED test data, proving superior to the other networks. In the hardware implementation, tests were conducted in a real environment, resulting in 96.55% and 14 fps on average for the DD-AI network, thereby confirming its superior performance.
Assuntos
Condução de Veículo , Redes Neurais de Computação , Humanos , Boca/fisiologia , Olho , Fases do Sono/fisiologia , Sonolência , Inteligência Artificial , Acidentes de TrânsitoRESUMO
In this work, we deal with the zero temperature hysteretic properties of iron (Fe) quadrangular nanoprisms and the size conditions underlying magnetic vortex states formation. Different aspect ratios of a square base prism of thickness t with free boundary conditions were considered in order to summarize our results in a proposal of a field-driven magnetic phase diagram where such vortex states are stable along the hysteresis loops. To do that, a Hamiltonian consisting of exchange, magnetostatic, Zeeman and cubic anisotropy energies was considered. The time dynamics at each magnetic field step was performed by solving the time-dependent Landau-Lifshitz-Gilbert differential equation. The micromagnetic simulations were performed using the Ubermag package based on the Object Oriented Micromagnetic Framework (OOMMF). Circular magnetic textures were also characterized by means of topological charge calculations. The aspect ratio dependencies of the coercive force, nucleation and annihilation fields are also analyzed. Computations agree with related experimental observations and other micromagnetic calculations.
RESUMO
The present work analyzes the effect of process variables and the method of characterization of cellulose micro/nanofibers (CMNFs) obtained by different treatments. A chemical pre-treatment was performed using oxalic acid at 25 wt.% and 50 wt.%. Moreover, for mechanical pre-treatments, a rotary homogenizer or a PFI mill refiner were considered. For the mechanical fibrillation to obtain CMNFs, 5 and 15 passes through a pressurized homogenization were considered. The best results of nanofibrillation yield (76.5%), transmittance (72.1%) and surface charges (71.0 µeq/g CMNF) were obtained using the PFI mill refiner, 50 wt.% oxalic acid and 15 passes. Nevertheless, the highest aspect ratio (length/diameter) determined by Transmission Electron Microscopy (TEM) was found using the PFI mill refiner and 25 wt.% oxalic acid treatment. The aspect ratio was related to the gel point and intrinsic viscosity of CMNF suspensions. The values estimated for gel point agree with those determined by TEM. Moreover, a strong relationship between the intrinsic viscosity [η] of the CMNF dispersions and the corresponding aspect ratio (p) was found (ρ[η] = 0.014 p2.3, R2 = 0.99). Finally, the tensile strength of films obtained from CMNF suspensions was more influenced by the nanofibrillation yield than their aspect ratio.
RESUMO
Gold nanorods (AuNRs) are promising nanoscale materials for several technological and biomedical applications. The physicochemical properties of AuNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios of AuNRs (1.90, 2.35, 3.25 and 3.50) at concentrations of 2 and 10 µg mL-1 on their cytotoxicity and cellular uptake in green algae Raphidocelis subcaptata. The experiment was performed in oligotrophic freshwater medium in a growth chamber with constant agitation of 80 rpm under controlled conditions (120 µEm-2s-1 illumination; 12:12h light dark cycle and constant temperature of 22 ± 2 °C). The algal growth was monitored daily for 96 h via electronic absorbance scanning at 600-750 nm. Oxidative stress, cell viability and autofluorescence were evaluated using a flow cytometer. Oxidative stress quantified by loading cultures with the fluorescent dye 2', 7'-dichlorofluorescein diacetate. To assess algal cell viability, propidium iodide was selected as the fluorescent probe. Our results indicated that the aspect ratio of AuNRs mediates their biological effects in green algae R. subcaptata. A positive correlation between oxidative stress and increase of aspect ratio was found at concentration of 10 µg mL-1. Higher cytotoxicity and mortality were observed for algae incubated with higher aspect ratios AuNRs (3.50). These findings may be useful to understand the impact of the AuNRs in aquatic environments, contributing to ecosystem management and nanomaterials regulation.
Assuntos
Nanoestruturas , Nanotubos , Sobrevivência Celular , Ecossistema , Ouro/toxicidade , Nanotubos/toxicidadeRESUMO
The morphology of cellulose nanofibrils (CNFs), the rheological characteristics of their dispersions, and the corresponding relationships, are fundamental for understanding the properties of the material. This work aims at understanding how the morphological characteristics of the CNFs affect the rheology of the dispersions in the dilute region and to establish a relationship between both properties. A strong relationship was observed between the intrinsic viscosity of the CNF dispersions and their aspect ratio, which can be correlated through the expression ρ[η]=0.051p1.85. When comparing the model obtained in this work to the wormlike chain model, it was possible to verify that these models are independent of the flexibility of the CNFs. Regarding the fibrillation process, the dynamic viscosity only reflects part of the behavior of the morphological properties of the CNFs and does not provide reliable data that would allow these characteristics to be inferred, while the intrinsic viscosity does allow this relationship.
RESUMO
The vapor-liquid-solid (VLS) process was applied to fabricate zinc oxide nanowires (ZnO NWs) with a different aspect ratio (AR), morphological, and optical properties. The ZnO NWs were grown on a system that contains a quartz substrate with transparent conductive oxide (TCO) thin film followed by an Al-doped ZnO (AZO) seed layer; both films were grown by magnetron sputtering at room temperature. It was found that the ZnO NWs presented high crystalline quality and vertical orientation from different structural and morphological characterizations. Also, NWs showed a good density distribution of 69 NWs/µm2 with a different AR that offers their capability to be used as possible photoelectrode (anode) in potential future device applications. The samples optical properties were studied using various techniques such as photoluminescence (PL), absorption, and transmittance before and after sensitization with N719 dye. The results demonstrated that NW with 30 nm diameter had the best characteristics as feasible photoelectrode (anode) (high absorption, minimum recombination, high crystallinity). Also, the present samples optical properties were found to be improved due to the existence of N719 dye and Au nanoparticles on the tip of NWs. NWs grown in this work can be used in different photonic and optoelectronic applications.
RESUMO
This study was performed to associate specific morphological parameters, defined by X-ray images, with seed performance of okra (Abelmoschus esculentus (L.) Moench) during maturation. Fruits of cultivar Santa Cruz 47 at different developmental stages were collected at five-day intervals (from 5 to 65 days after anthesis) and water content, dry matter, germination and vigor were determined in seeds extracted immediately after each harvest or after temporary storage for seven days. X-ray tests were also performed after each harvest and the images were analyzed by ImageJ® software to produce data of aspect ratio (relation between major and minor axes of the ellipse surrounding the seed perimeter) and percentage of free space area in the inner seed cavity. Physiological maturity (maximum accumulation of dry matter) was reached at 30 days after anthesis (DAA), when seed water content was 56.6 %. Seed germination and vigor increased during maturation, achieving the maximum at 50 DAA. Seeds showed morphological changes during maturation, becoming more spherical (aspect ratio near 1.0); at the same time, the free space available in the inner cavity of the seed decreased. This parameter can be successfully used as a marker of physiological maturity when values equal or lower than 5 % are reached.(AU)
Assuntos
Abelmoschus , Sementes , Raios X , Inteligência ArtificialRESUMO
This study was performed to associate specific morphological parameters, defined by X-ray images, with seed performance of okra (Abelmoschus esculentus (L.) Moench) during maturation. Fruits of cultivar Santa Cruz 47 at different developmental stages were collected at five-day intervals (from 5 to 65 days after anthesis) and water content, dry matter, germination and vigor were determined in seeds extracted immediately after each harvest or after temporary storage for seven days. X-ray tests were also performed after each harvest and the images were analyzed by ImageJ® software to produce data of aspect ratio (relation between major and minor axes of the ellipse surrounding the seed perimeter) and percentage of free space area in the inner seed cavity. Physiological maturity (maximum accumulation of dry matter) was reached at 30 days after anthesis (DAA), when seed water content was 56.6 %. Seed germination and vigor increased during maturation, achieving the maximum at 50 DAA. Seeds showed morphological changes during maturation, becoming more spherical (aspect ratio near 1.0); at the same time, the free space available in the inner cavity of the seed decreased. This parameter can be successfully used as a marker of physiological maturity when values equal or lower than 5 % are reached.
Assuntos
Abelmoschus , Sementes , Inteligência Artificial , Raios XRESUMO
Bats are the only mammals capable of powered flight. One of the oldest bats known from a complete skeleton is Onychonycteris finneyi from the Early Eocene (Green River Formation, Wyoming, 52.5 Ma). Estimated to weigh approximately 40 g, Onychonycteris exhibits the most primitive combination of characters thus far known for bats. Here, we reconstructed the aerofoil of the two known specimens, calculated basic aerodynamic variables and compared them with those of extant bats and gliding mammals. Onychonycteris appears in the edges of the morphospace for bats, underscoring the primitive conformation of its flight apparatus. Low aerodynamic efficiency is inferred for this extinct species as compared to any extant bat. When we estimated aerofoil variables in a model of Onychonycteris excluding the handwing, it closely approached the morphospace of extant gliding mammals. Addition of a handwing to the model lacking this structure results in a 2.3-fold increase in aspect ratio and a 28% decrease in wing loading, thus greatly enhancing aerodynamics. In the context of these models, the rapid evolution of the chiropteran handwing via genetically mediated developmental changes appears to have been a key transformation in the hypothesized transition from gliding to flapping in early bats.
Assuntos
Quirópteros , Animais , Voo Animal , Fósseis , Rios , Asas de AnimaisRESUMO
The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.
Assuntos
Comportamento Animal , Evolução Biológica , Borboletas/anatomia & histologia , Periodicidade , Asas de Animais/anatomia & histologia , Animais , Voo AnimalRESUMO
Since its introduction in Chile, the European Bombus terrestris L. (Hymenoptera: Apidae) has progressively reduced the abundance of the native Patagonian bumblebee, Bombus dahlbomii Guérin. Because an important cause of successful invasion of a species may depend on a potentially advantageous phenotype, we studied morphologies related to flight performance (flight muscle ratio (FMR), wing loading (WL), excess power index (EPI, which integrates FMR and WL) and wing aspect ratio (AR)) in the queens of the two species. Previous empirical studies showed that greater FMR, AR and EPI, and lower WL increase flight performance. In the Patagonian Chilean fjord where the study was carried out, B. dahlbomii was 40% heavier than B. terrestris, a difference theoretically allowing the queens of the native species to take off with heavier loads, despite the fact that the two species have virtually identical FMRs. However, FMR negatively depended on body mass at the intra-specific level. The total wing area was 35% greater in B. dahlbomii, but the difference in forewing length was only of 16%. Once taken into account the effect of body size, WL, was significantly lower in B. terrestris. AR increased with body mass and did not differ between species. EPI was weakly but significantly higher in B. terrestris. Experiments formally linking such parameters with flight performance may help to explain the observed quick and wide spread of this alien species in Patagonia in the last few years.
Assuntos
Abelhas/anatomia & histologia , Voo Animal , Animais , Abelhas/fisiologia , Tamanho Corporal , Peso Corporal , Chile , Comportamento Competitivo , Espécies em Perigo de Extinção , Feminino , Espécies Introduzidas , Músculos/fisiologia , Especificidade da Espécie , Asas de Animais/fisiologiaRESUMO
We compiled data from six species in four families of Caribbean bats collected on the island of Dominica in order to explore the relation between wing morphology and flight speed. An 18.3 m flight tunnel was constructed in second growth rain forest using a concrete structure as a frame and large tarps to enclose the perimeter, leaving one end open. Bats were caught using mist nets in areas of both mature and second growth rain forest and disturbed habitats. Bats were moved to the tunnel area where morphological measurements were recorded and each bat was photographed with the wing extended. Wing area and wing span were measured using the program ImageJ. These data in combination with other morphological measurements were used to calculate aspect ratio and wing loading, which were each compared to flight speed. To measure flight speed, a bat was released in the flight tunnel and times were recorded at 6.1 m, 12.2 m, and 18.3 m. The findings reveal that flight speed shows little relation to aspect ratio, with the exception of Tadarida brasiliensis, and that flight speed increases as a function of wing loading. The comparison of aspect ratio to relative wing loading demonstrates strong ecomorphological segregation based on foraging mode.
RESUMO
We compiled data from six species in four families of Caribbean bats collected on the island of Dominica in order to explore the relation between wing morphology and flight speed. An 18.3 m flight tunnel was constructed in second growth rain forest using a concrete structure as a frame and large tarps to enclose the perimeter, leaving one end open. Bats were caught using mist nets in areas of both mature and second growth rain forest and disturbed habitats. Bats were moved to the tunnel area where morphological measurements were recorded and each bat was photographed with the wing extended. Wing area and wing span were measured using the program ImageJ. These data in combination with other morphological measurements were used to calculate aspect ratio and wing loading, which were each compared to flight speed. To measure flight speed, a bat was released in the flight tunnel and times were recorded at 6.1 m, 12.2 m, and 18.3 m. The findings reveal that flight speed shows little relation to aspect ratio, with the exception of Tadarida brasiliensis, and that flight speed increases as a function of wing loading. The comparison of aspect ratio to relative wing loading demonstrates strong ecomorphological segregation based on foraging mode.