Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dentomaxillofac Radiol ; 50(7): 20210002, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882255

RESUMO

OBJECTIVE: To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). METHODS: For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (n = 22) and OKC (n = 18) based on a conclusive histopathological report. The images (n = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (k = 2) was used to estimate the accuracy of the CNN model. RESULTS: The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. CONCLUSION: This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.


Assuntos
Ameloblastoma , Neoplasias Maxilomandibulares , Cistos Odontogênicos , Ameloblastoma/diagnóstico por imagem , Computadores , Diagnóstico Diferencial , Humanos , Neoplasias Maxilomandibulares/diagnóstico por imagem , Redes Neurais de Computação , Cistos Odontogênicos/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA