Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J. inborn errors metab. screen ; 11: e20230008, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514439

RESUMO

Abstract Aromatic L-Amino acid decarboxylase (AADC) deficiency is a rare neurometabolic disorder due to a homozygous or compound heterozygous pathogenic variant of the DDC gene, resulting in low synthesis of the biogenic amines dopamine, serotonin, epinephrine, and norepinephrine. Most patients had severe expression of the disease with global developmental delay, early hypotonia, movement disorders such as oculogyric crises, tremor, and dystonia. Oromandibular dystonia (OMD) is rarely recognized in patients with AADC deficiency. The aim of this study was to describe OMD in detail in 4 patients with AADC deficiency. OMD occurred in isolated form or in association with oculogyric crises, increasing the difficulty in care patients during the crises. The main form of OMD was tongue dystonia associated with mouth opening dystonia. AADC deficiency must be included in the list of genetic causes of OMD.

2.
Mol Genet Metab Rep ; 32: 100888, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35769135

RESUMO

Aromatic l-amino acid decarboxylase (AADC, EC 4.1.1.28) deficiency is a rare genetic disorder characterized by developmental delay, oculogyric crises, autonomic dysfunction and other problems, caused by biallelic mutations in the DDC gene leading to deficient activity of aromatic l-amino acid decarboxylase, an enzyme involved in the formation of important neurotransmitters, such as dopamine and serotonin. A clinical development program of gene therapy for AADC deficiency is ongoing. An important step for the success of this therapy is the early and precise identification of the affected individuals, but it has been estimated that around 90% of the cases remain undiagnosed. The availability measurement of the AADC activity is mandatory for an accurate biochemical diagnosis. Based on these statements, our objectives were to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) method suitable for the determination of the AADC activity, and to evaluate its capacity to confirm the deficiency of AADC in potential patients in Brazil. The AADC activities were measured in plasma samples of seven AADC deficient patients and 35 healthy controls, after enzymatic reaction and LC-MS/MS analysis of dopamine, the main reaction product. The results obtained showed clear discrimination between confirmed AADC deficient patients and healthy controls. The method presented here could be incorporated in the IEM laboratories for confirmation of the diagnosis of when a suspicion of AADC deficiency is present due to clinical signs and/or abnormal biomarkers, including when an increased level of 3-O-methyldopa (3-OMD) is found in dried blood spots (DBS) samples from high-risk patients or from newborn screening programs.

3.
Mol Genet Metab Rep ; 27: 100744, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33763332

RESUMO

Aromatic L-amino acid decarboxylase (AADCD) deficiency is an autosomal recessive neurometabolic disorder, caused by biallelic mutations in the DDC gene, that impairs the synthesis or metabolism of neurotransmitters leading to severe motor dysfunction. The main clinical signs are oculogyric crisis, hypotonia, hypokinesia, and dystonia. The biochemical diagnosis can be performed in cerebrospinal fluid by neurotransmitter analysis, which requires an invasive lumbar puncture, and the sample needs to be shipped frozen to a reference laboratory, usually across a country border. Measurement of AADC activity in plasma is also possible, but available in a few labs globally. 3-O-methyldopa (3-OMD) is a catabolic product of L-dopa and it is elevated in patients with AADC deficiency. The quantification of 3-OMD can be performed in dried blood spots (DBS), a sample that could be shipped at room temperature. 3-OMD levels of AADCD patients and controls were quantified in DBS by liquid chromatography tandem mass spectrometry. DBS samples from 7 Brazilian patients previously diagnosed with AADCD were used to validate the 3-OMD quantification as a screening procedure for this condition. All AADCD patients had at least a four-fold increase of 3-OMD. Thus, 3-OMD seems to be a reliable marker for AADCD, with potential use also in the newborn screening of this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA