Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891364

RESUMO

Drought affects several plant physiological characteristics such as photosynthesis, carbon metabolism, and chlorophyll content, causing hormonal and nutritional imbalances and reducing nutrient uptake and transport, which inhibit growth and development. The use of bioinoculants based on plant growth-promoting microorganisms such as plant growth-promoting rhizobacteria (PGPR), yeasts, and arbuscular mycorrhizal fungi (AMF) has been proposed as an alternative to help plants tolerate drought. However, most studies have been based on the use of a single type of microorganism, while consortia studies have been scarcely performed. Therefore, the aim of this study was to evaluate different combinations of three PGPR, three AMF, and three yeasts with plant growth-promoting attributes to improve the biochemical, nutritional, and physiological behavior of strawberry plants growing under severe drought. The results showed that the growth and physiological attributes of the non-inoculated plants were significantly reduced by drought. In contrast, plants inoculated with the association of the fungus Claroideoglomus claroideum, the yeast Naganishia albida, and the rhizobacterium Burkholderia caledonica showed a stronger improvement in tolerance to drought. High biomass, relative water content, fruit number, photosynthetic rate, transpiration, stomatal conductance, quantum yield of photosystem II, N concentration, P concentration, K concentration, antioxidant activities, and chlorophyll contents were significantly improved in inoculated plants by up to 16.6%, 12.4%, 81.2%, 80%, 79.4%, 71.0%, 17.8%, 8.3%, 6.6%, 57.3%, 41%, and 22.5%, respectively, compared to stressed non-inoculated plants. Moreover, decreased malondialdehyde levels by up to 32% were registered. Our results demonstrate the feasibility of maximizing the effects of inoculation with beneficial rhizosphere microorganisms based on the prospect of more efficient combinations among different microbial groups, which is of interest to develop bioinoculants oriented to increase the growth of specific plant species in a global scenario of increasing drought stress.

2.
Braz J Microbiol ; 55(3): 2827-2837, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38769246

RESUMO

We assessed, in a field experiment, the effects of arbuscular mycorrhizal fungi (Rhizophagus intraradices) and plant growth-promoting bacteria (Azospirillum brasilense) on the soil biological activity and the growth of key pioneer species used in the revegetation of coal-mining areas undergoing recovery. We applied four inoculation treatments to the pioneer plant species (Lablab purpureus, Paspalum notatum, Crotalaria juncea, Neonotonia wightii, Stylosanthes guianensis, Andropogon gayanus and Trifolium repens) used in the recovery process: NI (Control - Non-inoculated), AZO (A. brasilense), AMF (R. intraradices), and co-inoculation of AZO and AMF. On the 75th and 180th days, we measured plant dry mass, mycorrhizal colonization, N and P concentration, and accumulation in plant tissue. We collected soil to quantify glomalin content and soil enzyme activity. After 180 days, we did a phytosociological characterization of the remaining spontaneous plants.The both microorganisms, singly or co-inoculated, promoted increases in different fractions of soil glomalin, acid phosphatase activity, and fluorescein diacetate activity at 75 and 180 days. The inoculation was linked to higher plant biomass production (62-89%) and increased plant P and N accumulation by 34-75% and 70-85% at 180 days, compared with the non-inoculated treatment. Among the pioneer species sown Crotalaria juncea produced the highest biomass at the 75th and 180th days (67% and 76% of all biomass), followed by Lablab purpureus (3% and 0.5%), while the other species failed to establish. At 180 days, we observed twenty spontaneous plant species growing in the area, primarily from the Poaceae family (74%). That suggests that the pioneer species present in the area do not hinder the ecological succession process. Inoculation of R. intraradices and A. brasilense, isolated or combined, increases soil biological activity, growth, and nutrient accumulation in key pioneer plant species, indicating the potential of that technique for the recovery of lands degraded by coal mining.


Assuntos
Azospirillum brasilense , Minas de Carvão , Micorrizas , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/crescimento & desenvolvimento , Solo/química , Azospirillum brasilense/metabolismo , Azospirillum brasilense/crescimento & desenvolvimento , Glomeromycota/fisiologia , Glomeromycota/crescimento & desenvolvimento , Desenvolvimento Vegetal , Nitrogênio/metabolismo , Nitrogênio/análise
3.
Plant Biol (Stuttg) ; 26(1): 51-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937739

RESUMO

The mutualistic relationship between plants and arbuscular mycorrhizal (AM) fungi is essential for optimal plant nutrition, enabling plants to better withstand biotic and abiotic stressors and enhancing survival, reproduction, and colonization of new environments. Activities, such as soil enrichment or compaction, may decrease the benefits of AM fungi for plants, potentially reducing interactions in urban environments. Here, we examine this prediction by studying how urbanization alters AM interactions with the invasive herb Ruellia nudiflora (Acanthaceae). We collected soil and plants from deep urban sites (DUS; e.g., sidewalks), open urban sites (OUS; parks), and rural sites (RS) to analyse soil nutrient content, plant morphology, AM colonization rates, spore density, richness, and diversity. Contrary to predicted, DUS had the lowest soil nutrient concentration, except for phosphorus, reducing AM colonization. This supports the prediction of reduced AM interactions in urban environments. We also found that potassium affects the AM association. Urban plants had smaller and more compact root systems compared to their rural counterparts, but there were no discernible differences in AM fungi communities between urban and rural environments. Phosphorus enrichment in sidewalks is the main driver of reductionof R. nudiflora-AM fungi interactions in Mérida. More studies are needed to gain a better understanding of how AM fungi contribute to plant colonization in urban environments.


Assuntos
Micorrizas , Solo , Fungos , Meio Ambiente , Simbiose , Plantas , Fósforo , Microbiologia do Solo , Raízes de Plantas/microbiologia
4.
Plants (Basel) ; 12(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068648

RESUMO

Phytoremediation, an environmentally friendly and sustainable approach for addressing Cu-contaminated environments, remains underutilized in mine tailings. Arbuscular mycorrhizal fungi (AMF) play a vital role in reducing Cu levels in plants through various mechanisms, including glomalin stabilization, immobilization within fungal structures, and enhancing plant tolerance to oxidative stress. Yeasts also contribute to plant growth and metal tolerance by producing phytohormones, solubilizing phosphates, generating exopolysaccharides, and facilitating AMF colonization. This study aimed to assess the impact of AMF and yeast inoculation on the growth and antioxidant response of Oenothera picensis plants growing in Cu mine tailings amended with compost. Plants were either non-inoculated (NY) or inoculated with Meyerozyma guilliermondii (MG), Rhodotorula mucilaginosa (RM), or a combination of both (MIX). Plants were also inoculated with Claroideoglomus claroideum (CC), while others remained non-AMF inoculated (NM). The results indicated significantly higher shoot biomass in the MG-NM treatment, showing a 3.4-fold increase compared to the NY-NM treatment. The MG-CC treatment exhibited the most substantial increase in root biomass, reaching 5-fold that in the NY-NM treatment. Co-inoculation of AMF and yeast influenced antioxidant activity, particularly catalase and ascorbate peroxidase. Furthermore, AMF and yeast inoculation individually led to a 2-fold decrease in total phenols in the roots. Yeast inoculation notably reduced non-enzymatic antioxidant activity in the ABTS and CUPRAC assays. Both AMF and yeast inoculation promoted the production of photosynthetic pigments, further emphasizing their importance in phytoremediation programs for mine tailings.

5.
PeerJ ; 11: e16151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025720

RESUMO

Background: Around the world, bamboos are ecologically, economically, and culturally important plants, particularly in tropical regions of Asia, America, and Africa. The association of this plant group with arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota is still a poorly studied field, which limits understanding of the reported ecological and physiological benefits for the plant, fungus, soil, and ecosystems under this symbiosis relationship. Methods: Through a qualitative systematic review following the PRISMA framework for the collection, synthesis, and reporting of evidence, this paper presents a compilation of the research conducted on the biology and ecology of the symbiotic relationship between Glomeromycota and Bambusoideae from around the world. This review is based on academic databases enriched with documents retrieved using different online databases and the Google Scholar search engine. Results: The literature search yielded over 6,000 publications, from which 18 studies were included in the present review after a process of selection and validation. The information gathered from the publications included over 25 bamboo species and nine Glomeromycota genera from eight families, distributed across five countries on two continents. Conclusion: This review presents the current state of knowledge regarding the symbiosis between Glomeromycota and Bambusoideae, while reflecting on the challenges and scarcity of research on this promising association found across the world.


Assuntos
Glomeromycota , Micorrizas , Humanos , Simbiose , Glomeromycota/fisiologia , Ecossistema , Micorrizas/fisiologia , Plantas/microbiologia
6.
Front Fungal Biol ; 4: 1086194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746118

RESUMO

This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.

7.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755001

RESUMO

Soil salinity is a limiting factor in crop productivity. Inoculating crops with microorganisms adapted to salt stress is an alternative to increasing plant salinity tolerance. Few studies have simultaneously propagated arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF) using different sources of native inoculum from halophyte plants and evaluated their effectiveness. In alfalfa plants as trap culture, this study assessed the infectivity of 38 microbial consortia native from rhizosphere soil (19) or roots (19) from six halophyte plants, as well as their effectiveness in mitigating salinity stress. Inoculation with soil resulted in 26-56% colonization by AMF and 12-32% by DSF. Root inoculation produced 10-56% and 8-24% colonization by AMF and DSF, respectively. There was no difference in the number of spores of AMF produced with both inoculum types. The effective consortia were selected based on low Na but high P and K shoot concentrations that are variable and are relevant for plant nutrition and salt stress mitigation. This microbial consortia selection may be a novel and applicable model, which would allow the production of native microbial inoculants adapted to salinity to diminish the harmful effects of salinity stress in glycophyte plants in the context of sustainable agriculture.

8.
Plants (Basel) ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299094

RESUMO

In its natural distribution, Araucaria araucana is a plant species usually exposed to extreme environmental constraints such as wind, volcanism, fires, and low rainfall. This plant is subjected to long periods of drought, accentuated by the current climate emergency, causing plant death, especially in its early growth stages. Understanding the benefits that both arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EF) could provide plants under different water regimes would generate inputs to address the above-mentioned issues. Here, the effect of AMF and EF inoculation (individually and combined) on the morphophysiological variables of A. araucana seedlings subjected to different water regimes was evaluated. Both the AMF and EF inocula were obtained from A. araucana roots growing in natural conditions. The inoculated seedlings were kept for 5 months under standard greenhouse conditions and subsequently subjected to three different irrigation levels for 2 months: 100, 75, and 25% of field capacity (FC). Morphophysiological variables were evaluated over time. Applying AMF and EF + AMF yielded a noticeable survival rate in the most extreme drought conditions (25% FC). Moreover, both the AMF and the EF + AMF treatments promoted an increase in height growth between 6.1 and 16.1%, in the production of aerial biomass between 54.3 and 62.6%, and in root biomass between 42.5 and 65.4%. These treatments also kept the maximum quantum efficiency of PSII (Fv/Fm 0.71 for AMF and 0.64 for EF + AMF) stable, as well as high foliar water content (>60%) and stable CO2 assimilation under drought stress. In addition, the EF + AMF treatment at 25% FC increased the total chlorophyll content. In conclusion, using indigenous strains of AMF, alone or in combination with EF, is a beneficial strategy to produce A. araucana seedlings with an enhanced ability to tolerate prolonged drought periods, which could be of great relevance for the survival of these native species under the current climate change.

9.
J Fungi (Basel) ; 9(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37108876

RESUMO

The Chilean matorral is a heavily threatened Mediterranean-type ecosystem due to human-related activities such as anthropogenic fires. Mycorrhizal fungi may be the key microorganisms to help plants cope with environmental stress and improve the restoration of degraded ecosystems. However, the application of mycorrhizal fungi in the restoration of the Chilean matorral is limited because of insufficient local information. Consequently, we assessed the effect of mycorrhizal inoculation on the survival and photosynthesis at set intervals for two years after a fire event in four native woody plant species, namely: Peumus boldus, Quillaja saponaria, Cryptocarya alba, and Kageneckia oblonga, all dominant species of the matorral. Additionally, we assessed the enzymatic activity of three enzymes and macronutrient in the soil in mycorrhizal and non-mycorrhizal plants. The results showed that mycorrhizal inoculation increased survival in all studied species after a fire and increased photosynthesis in all, but not in P. boldus. Additionally, the soil associated with mycorrhizal plants had higher enzymatic activity and macronutrient levels in all species except in Q. saponaria, in which there was no significant mycorrhization effect. The results suggest that mycorrhizal fungi could increase the fitness of plants used in restoration initiatives after severe disturbances such as fires and, consequently, should be considered for restoration programs of native species in threatened Mediterranean ecosystems.

10.
J Fungi (Basel) ; 9(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36836309

RESUMO

(1) Background: Beta diversity, i.e., the variance in species compositions across communities, has been pointed out as a main factor for explaining ecosystem functioning. However, few studies have directly tested the effect of crop establishment on beta diversity. We studied beta diversity patterns of arbuscular mycorrhizal (AM) fungal communities associated to sacha inchi (Plukenetia volubilis) after crop establishment. (2) Methods: We molecularly characterized the AM fungal communities associated to roots of sacha inchi in plots after different times of crop establishment, from less than one year to older than three. We analyzed the patterns of alpha, beta, and phylogenetic diversity, and the sources of variation of AM fungal community composition. (3) Results: Beta diversity increased in the older plots, but no temporal effect in alpha or phylogenetic diversity was found. The AM fungal community composition was driven by environmental factors (altitude and soil conditions). A part of this variation could be attributed to differences between sampled locations (expressed as geographic coordinates). Crop age, in turn, affected the composition with no interactions with the environmental conditions or spatial location. (4) Conclusions: These results point out towards a certain recovery of the soil microbiota after sacha inchi establishment. This fact could be attributed to the low-impact management associated to this tropical crop.

11.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840302

RESUMO

Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.

12.
PeerJ ; 11: e14651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650841

RESUMO

The biogeographic region of Argentinean Puna mainly extends at elevations higher than 3,000 m within the Andean Plateau and hosts diverse ecological communities highly adapted to extreme aridity and low temperatures. Soils of Puna are typically poorly evolved and geomorphology is shaped by drainage networks, resulting in highly vegetated endorheic basins and hypersaline basins known as salar or salt flats. Local communities rely on soil fertility for agricultural practices and on pastures for livestock rearing. From this perspective, investigating the scarcely explored microbiological diversity of these soils as indicators of ecosystems functioning might help to predict the fragility of these harsh environments. In this study we collected soil samples from 28 points, following a nested design within three different macro-habitats, i.e., Puna grassland, hypersaline salar and family-run crop fields. Total fungi and arbuscular mycorrhizal fungi (AMF) occurrence were analyzed using eDNA sequencing. In addition, the significance of soil salinity and organic matter content as significant predictors of AMF occurrence, was assessed through Generalized Linear Mixed Modeling. We also investigated whether intensive grazing by cattle and lama in Puna grasslands may reduce the presence of AMF in these highly disturbed soils, driving or not major ecological changes, but no consistent results were found, suggesting that more specific experiments and further investigations may address the question more specifically. Finally, to predict the suitability for AMF in the different macro-habitats, Species Distribution Modeling (SDM) was performed within an environmental coherent area comprising both the phytogeographic regions of Puna and Altoandino. We modeled AMF distribution with a maximum entropy approach, including bioclimatic and edaphic predictors and obtaining maps of environmental suitability for AMF within the predicted areas. To assess the impact of farming on AMF occurrence, we set a new series of models excluding the cultivated Chaupi Rodeo samples. Overall, SDM predicted a lower suitability for AMF in hypersaline salar areas, while grassland habitats and a wider temperature seasonality range appear to be factors significantly related to AMF enrichment, suggesting a main role of seasonal dynamics in shaping AMF communities. The highest abundance of AMF was observed in Vicia faba crop fields, while potato fields yielded a very low AMF occurrence. The models excluding the cultivated Chaupi Rodeo samples highlighted that if these cultivated areas had theoretically remained unmanaged habitats of Puna and Altoandino, then large-scale soil features and local bioclimatic constraints would likely support a lower suitability for AMF. Using SDM we evidenced the influence of bioclimatic, edaphic and anthropic predictors in shaping AMF occurrence and highlighted the relevance of considering human activities to accurately predict AMF distribution.


Assuntos
Micorrizas , Humanos , Animais , Bovinos , Micorrizas/genética , Solo , Ecossistema , Entropia , Agricultura/métodos
13.
Int J Phytoremediation ; 25(4): 538-549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35867895

RESUMO

Ferns and lycophytes are pioneer plants that can be useful for revegetation. Their natural distribution and interaction with soil fungal endophytes can increase plant fitness but have received little attention. This study aimed to identify these plant species in mine wastes, and determine colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The pseudo-total and diethylenetriamine pentaacetic acid (DTPA)-extractable rhizosphere concentrations of As, Cu, Cd, Pb, and Zn, bioavailability index (BI), and bioconcentration factor (BCF) were analyzed. Six ferns and one lycophyte were identified. Arsenic and metal concentrations were high, which were plant and site-dependent. All species showed hyperaccumulation of As in fronds, especially Argyrochosma formosa (2,883) and Notholaena affinis (2,160) had the highest concentrations (mg kg-1). All plants were colonized by AMF (3%-24%) and DSE (2%-33%). Astrolepis sinuata and Myriopteris notholaenoides had the maximum colonization by AMF and A. formosa by DSE. This study identifies for the first time five ferns and one lycophyte species on mine wastes, their As hyperaccumulation capacity and the simultaneous fungal colonization by AMF and DSE. These are relevant plant traits for phytoremediation. However, fungal identification and the role colonization by AMF and DSE requires full analysis.


Arsenic accumulator ferns and a lycophytes species naturally established on three polluted sites were found. Astrolepis integerrima, A. sinuata, Myriopteris notholaenoides, Notholaena affinis, N. sulphurea, and the lycophyte Selaginella lepidophylla are for the first time reported in these sites. This is the first evidence of DSE colonization in these plants growing on mine wastes in interaction with AMF-colonization. These plants may be useful in developing phytoremediation alternatives.


Assuntos
Gleiquênias , Micorrizas , Simbiose , Raízes de Plantas , México , Biodegradação Ambiental , Plantas , Endófitos , Metais
14.
J Environ Manage ; 326(Pt A): 116569, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356540

RESUMO

The quartzite rock outcrops and the native vegetation of grasslands located at the Serra da Calçada Mountain in Minas Gerais State (Brazil) have been severely degraded by extreme sports activities such as motocross and off-road vehicles, greatly damaging the abundant headwaters. The main consequences thereof were hilly and gully erosion processes with soil loss and the deviation of the water from its original paths. However, currently, there is no report of successful restoration efforts in severely eroded outcrops in Brazilian high-altitude grasslands (campo rupestre). Through the Universal Soil Loss Equation (USLE), we found a high general erosion rate in the study site (669.91 t·ha-1·year-1), and the specific soil loss provoked by off-road vehicles on trails was significantly greater (49 m3 per 100 m2) than that caused by mountain bikes and trekking (5.8 m3 per 100 m2). We performed the physical reconstruction of eroded outcrops and surface water flow paths by allocating locally available quartzite rocks. These rocks were inoculated with different species of bryophytes and planted with native species under two treatments: un-inoculated and inoculated with arbuscular mycorrhizal fungi (AMF) spores of the Rhizophagus irregularis species. After 2 years, the bryophyte communities showed a similar pattern to the preserved site, and the AMF inoculation favoured plant establishment of most species, especially of the Asteraceae, Cyperaceae, Fabaceae, Malpighiaceae, Orchidaceae and Poaceae families. The AMF also improved the soil fertility, highlighting soil P, SOM, CEC, NH4+-N as well as soil water content and water retention capacity. Poaceae family species showed an outstanding occupation, which was considered a functional indicator of rehabilitation success, functioning as a "hydraulic carpet" for water exportation, conduction and drainage across the outcrops. This study provides an eco-technology to restore severely eroded outcrops over headwaters using native species in the Brazilian high-altitude grasslands.


Assuntos
Pradaria , Micorrizas , Humanos , Microbiologia do Solo , Altitude , Solo , Poaceae , Água , Raízes de Plantas/microbiologia
15.
Nat Prod Res ; 37(6): 981-984, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35762366

RESUMO

The possibility of modifying terpene production in plants is a defensive strategy that has been studied in conjunction with their biosynthetic pathways. A biotic factor such as Arbuscular Mycorrhizal Fungi (AMF) could modify terpene production in Trifolium pratense L. In this work, the enzymatic production of monoterpenes in Superqueli INIA cultivar with two AMF was evaluated via HeadSpace-Gas Chromatography (HS-GC). A significant increase of (S)-limonene was found in plants inoculated with Claroideoglomus claroideum as well as with the AMF mix (genera Scutellospora, Acaulospora and Glomus). Moreover, significant increases in other monoterpenes such as (-)-ß-pinene, myrcene, linalool, were observed. Results showed higher monoterpene production capacities in the Superqueli-INIA cultivar, suggesting the participation of monoterpene synthases (MTS). The significant rise of (S)-limonene in red clover plants inoculated with AMF suggests this strategy could be implemented in an agronomical manage for controlling the H. obscurus, the primary pest.


Assuntos
Micorrizas , Trifolium , Micorrizas/metabolismo , Trifolium/metabolismo , Trifolium/microbiologia , Monoterpenos , Limoneno , Fungos/metabolismo , Terpenos/metabolismo , Plantas/metabolismo , Controle de Pragas
16.
Front Plant Sci ; 13: 1001895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570930

RESUMO

Soil properties and microbial activities are indicators that shape plant communities and evolution. We aimed to determine the interdependency between trees, belowground herbaceous plants, soil characteristics, and arbuscular mycorrhizal communities. Vachellia seyal and Prosopis chilensis and their associated herb layers were targeted. Soils sampled beneath the trees and outside the canopies were subjected to physicochemical and microbial characterization. Randomly collected living roots of trees and dominant herbs were checked for arbuscular mycorrhizal colonization. A tree seedlings nursery was conducted using black bags filled with the following substrates: natural soil 100%, soil mixed with leaf tree plants (LTPs) as organic matter at 10%, soil mixed with LTP at 20%, soil mixed with LTP at 30%, and soil mixed with LTP at 50%. As a result, the presence of trees improves both herb richness and diversity. Soil mycorrhizal inoculum potentials are higher beneath V. seyal than P. chilensis and decreased significantly with increasing distance from trees. The soil MIP decreased with increasing organic matter content for both tree species but was more pronounced for P. chilensis. Soil salinity is lower beneath V. seyal and higher under P. chilensis and outside the canopies. Soil fertility parameters such as carbon, nitrogen, and available phosphorus are higher beneath the trees and then decreased as the distance to the trees increases. We conclude that microbial communities, soil properties, and herb richness and diversity increased beneath the trees but decreased with increasing distance from the trees. This effect is tree species-dependent as P. chilensis increased soil salinity and decreased the belowground density of herbs.

17.
Plants (Basel) ; 11(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235406

RESUMO

Solanum tuberosum is one of the most important crops in the world; however, drought has caused significant losses in its production. One solution is the use of arbuscular mycorrhizal fungi (AMF). In this study, the phenolic profiles and antioxidant activity of the leaves of two potato genotypes (VR808 and CB2011-104) were evaluated over time in crops inoculated with two strains of AMF, as well as a consortium, in combination with a commercial fungicide. In addition, three usable humidity levels were established after the beginning of tuberization. The phenolic compounds found during the first sampling time in the VR808 genotype reached a maximum of 3348 mg kg-1, and in the CB2011-104 genotype, they reached a maximum of 2982 mg kg-1. Seven phenolic compounds were detected in the VR808 genotype, and eleven were detected in the CB2011-104 genotype, reaching the highest concentration at the last sampling time. The antioxidant activity in the first sampling was greater than the Trolox equivalent antioxidant capacity (TEAC), and in the third sampling, the cupric reducing antioxidant capacity (CUPRAC) predominated. The association of AMF with the plant by PCA demonstrated that these fungi assist in protecting the plants against water stress, since in the last harvest, the results were favorable with both mycorrhizae.

18.
Braz J Microbiol ; 53(4): 2039-2050, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907141

RESUMO

Mycorrhizae association is reported to enhance the survivability of the host plant under adverse environmental conditions. The present study aims to explore the mycorrhizal association in the roots of different ecotypes of a threatened medicinal plant, Clerodendrum indicum (L.) O. Kuntze (Verbenaceae), collected from W.B., India, which correlates the degree of root colonization to the nutritional status of the native soil. Ten ecotypes of C. indicum having diverse morphological variations were collected. The mycorrhizae were characterized by both morphological and molecular methods. The nutritional status of the native soils was estimated. The study revealed that all the ecotypes have an association with mycorrhizal forms like hyphae, arbuscules, and vesicles. The molecular analysis showed Glomus intraradices and Rhizophagus irregularis as the associated arbuscular mycorrhizal fungi (AMF). A significant variation in arbuscule and vesicle formation was found growing in the varied nutritional statuses concerning soil parameters. The arbuscule was found negatively correlated with pH, conductivity, and potassium and positively correlated with organic carbon, nitrogen, and phosphorus. The vesicle was found positively correlated with pH, organic carbon, and potassium and negatively correlated with conductivity, nitrogen, and phosphorus. The interaction between conductivity: nitrogen, conductivity: phosphorus, organic-carbon: nitrogen, and pH: conductivity was significant in influencing vesicle formation. However, none of the interactions between parameters was found significant in influencing arbuscule formation. Thus, the study concludes that G. intraradices and R. irregularis are the principle mycorrhizae forming the symbiotic association with the threatened medicinal plant, C. indicum. They form vesicles and arbuscules based on their soil nutritive factors. Therefore, a large-scale propagation through a selective AMF association would help in the conservation of this threatened species from extinction.


Assuntos
Clerodendrum , Micorrizas , Plantas Medicinais , Verbenaceae , Micorrizas/genética , Raízes de Plantas/microbiologia , Fósforo , Solo , Nitrogênio , Carbono , Potássio
19.
New Phytol ; 235(1): 320-332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302658

RESUMO

The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.


Assuntos
Glomeromycota , Micorrizas , Raízes de Plantas , Plantas/microbiologia , Simbiose
20.
New Phytol ; 233(1): 505-514, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626495

RESUMO

Many plant species simultaneously interact with multiple symbionts, which can, but do not always, generate synergistic benefits for their host. We ask if plant life history (i.e. annual vs perennial) can play an important role in the outcomes of the tripartite symbiosis of legumes, arbuscular mycorrhizal fungi (AMF), and rhizobia. We performed a meta-analysis of 88 studies examining outcomes of legume-AMF-rhizobia interactions on plant and microbial growth. Perennial legumes associating with AMF and rhizobia grew larger than expected based on their response to either symbiont alone (i.e. their response to co-inoculation was synergistic). By contrast, annual legume growth with co-inoculation did not differ from additive expectations. AMF and rhizobia differentially increased phosphorus (P) and nitrogen (N) tissue concentration. Rhizobium nodulation increased with mycorrhizal fungi inoculation, but mycorrhizal fungi colonization did not increase with rhizobium inoculation. Microbial responses to co-infection were significantly correlated with synergisms in plant growth. Our work supports a balanced plant stoichiometry mechanism for synergistic benefits. We find that synergisms are in part driven by reinvestment in complementary symbionts, and that time-lags in realizing benefits of reinvestment may limit synergisms in annuals. Optimization of microbiome composition to maximize synergisms may be critical to productivity, particularly for perennial legumes.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Fósforo , Raízes de Plantas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA