Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731832

RESUMO

Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this disease is urgent. Natural products, especially those obtained from plants, have played an important role as a source of specialized metabolites with recognized pharmacological properties against cancer, therefore, they are an excellent alternative to be used. The objective of this research was to evaluate the action of the monoterpene isoespintanol (ISO) against the human tumor cell lines MDA-MB-231, A549, DU145, A2780, A2780-cis and the non-tumor line MRC-5. Experiments with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescence with propidium iodide (PI), 4',6-diamidino-2-phenylindole dilactate (DAPI) and green plasma revealed the cytotoxicity of ISO against these cells; furthermore, morphological and chromogenic studies revealed the action of ISO on cell morphology and the inhibitory capacity on reproductive viability to form colonies in MDA-MB-231 cells. Likewise, 3D experiments validated the damage in these cells caused by this monoterpene. These results serve as a basis for progress in studies of the mechanisms of action of these compounds and the development of derivatives or synthetic analogues with a better antitumor profile.


Assuntos
Monoterpenos , Humanos , Linhagem Celular Tumoral , Monoterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
J Toxicol Environ Health A ; 87(7): 310-324, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285000

RESUMO

Soursop (Annona muricata) is a tropical tree whose decoction derived from bark, root, seed, or leaf has been used for medicinal uses. In addition, the fruit itself is considered a food, and the juice is utilized to treat heart and liver diseases. The aim of this study was to determine the phenolic content. In addition, a water-soluble fraction of the soursop fruit pulp (WSSP) was examined for the following properties: antioxidant, mutagenic, and antimutagenicity. UV-visible spectrophotometry determined total phenolic content by the Folin-Ciocalteu method to be 11.22 ± 0.6 mg of gallic acid equivalent per gram dried extract, and free-radical scavenging activity by the 2,2'-diphenyl-1-picryl-hydrazyl (DPPH•) showed an EC50 of 1032 µg/ml. In the Salmonella/microsome assay, no marked mutagenicity was induced following WSSP treatment, and a chemopreventive capacity was observed in the antimutagenic assay. The cytotoxicity assays were carried out using the water-soluble tetrazolium salt and lactate dehydrogenase (LDH) assays demonstrated that WSSP induced significant cytotoxicity in MCF-7 and Caco-2 cells, indicating greater effectiveness of cytotoxic action by destroying cell membrane integrity. Data suggest that WSSP may exert beneficial effects as a DNA chemopreventive and antitumor agent.


Assuntos
Annona , Humanos , Annona/química , Frutas/química , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/análise , Antioxidantes/farmacologia
3.
J Chemother ; 36(3): 222-237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37800867

RESUMO

Countless efforts have been made to prevent and suppress the formation and spread of melanoma. Natural astaxanthin (AST; extracted from the alga Haematococcus pluvialis) showed an antitumor effect on various cancer cell lines due to its interaction with the cell membrane. This study aimed to characterize the antitumor effect of AST against B16F10-Nex2 murine melanoma cells using cell viability assay and evaluate its mechanism of action using electron microscopy, western blotting analysis, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and mitochondrial membrane potential determination. Astaxanthin exhibited a significant cytotoxic effect in murine melanoma cells with features of apoptosis and autophagy. Astaxanthin also decreased cell migration and invasion in vitro assays at subtoxic concentrations. In addition, assays were conducted in metastatic cancer models in mice where AST significantly decreased the development of pulmonary nodules. In conclusion, AST has cytotoxic effect in melanoma cells and inhibits cell migration and invasion, indicating a promising use in cancer treatment.


Assuntos
Antineoplásicos , Melanoma Experimental , Camundongos , Animais , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia , Proliferação de Células , Camundongos Endogâmicos C57BL , Xantofilas
4.
Curr Pharm Des ; 29(44): 3579-3588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38083887

RESUMO

BACKGROUND: In a previous work, an IL-2Rßγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE: In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS: Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS: IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION: PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.


Assuntos
Interleucina-2 , Proteínas , Humanos , Polietilenoglicóis/química
5.
Pharmaceutics ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140092

RESUMO

The coating of liposomes with polyethyleneglycol (PEG) has been extensively discussed over the years as a strategy for enhancing the in vivo and in vitro stability of nanostructures, including doxorubicin-loaded liposomes. However, studies have shown some important disadvantages of the PEG molecule as a long-circulation agent, including the immunogenic role of PEG, which limits its clinical use in repeated doses. In this context, hydrophilic molecules as carbohydrates have been proposed as an alternative to coating liposomes. Thus, this work studied the cytotoxicity and preclinical antitumor activity of liposomes coated with a glycosyl triazole glucose (GlcL-DOX) derivative as a potential strategy against breast cancer. The glucose-coating of liposomes enhanced the storage stability compared to PEG-coated liposomes, with the suitable retention of DOX encapsulation. The antitumor activity, using a 4T1 breast cancer mouse model, shows that GlcL-DOX controlled the tumor growth in 58.5% versus 35.3% for PEG-coated liposomes (PegL-DOX). Additionally, in the preliminary analysis of the GlcL-DOX systemic toxicity, the glucose-coating liposomes reduced the body weight loss and hepatotoxicity compared to other DOX-treated groups. Therefore, GlcL-DOX could be a promising alternative for treating breast tumors. Further studies are required to elucidate the complete GlcL-DOX safety profile.

6.
Life (Basel) ; 13(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004326

RESUMO

Brazilian green propolis is a well-known product that is consumed globally. Its major component, Artepillin C, showed potential as an antitumor product. This study explored the impact of Artepillin C on fibroblast and glioblastoma cell lines, used as healthy and very aggressive tumor cell lines, respectively. The focus of the study was to evaluate the pH-dependence of Artepillin C cytotoxicity, since tumor cells are known to have a more acidic extracellular microenvironment compared to healthy cells, and Artepillin C was shown to become more lipophilic at lower pH values. Investigations into the pH-dependency of Artepillin C (6.0-7.4), through viability assays and live cell imaging, revealed compelling insights. At pH 6.0, MTT assays showed the pronounced cytotoxic effects of Artepillin C, yielding a notable reduction in cell viability to less than 12% among glioblastoma cells following a 24 h exposure to 100 µM of Artepillin C. Concurrently, LDH assays indicated significant membrane damage, affecting approximately 50% of the total cells under the same conditions. Our Laurdan GP analysis suggests that Artepillin C induces autophagy, and notably, provokes a lipid membrane packing effect, contributing to cell death. These combined results affirm the selective cytotoxicity of Artepillin C within the acidic tumor microenvironment, emphasizing its potential as an effective antitumor agent. Furthermore, our findings suggest that Artepillin C holds promise for potential applications in the realm of anticancer therapies given its pH-dependence cytotoxicity.

7.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630891

RESUMO

Multidrug resistance (MDR) is the main challenge in cancer treatment. In this sense, we designed transferrin (Tf)-conjugated PLGA nanoparticles (NPs) containing an organoselenium compound as an alternative to enhance the efficacy of cancer therapy and sensitize MDR tumor cells. Cytotoxicity studies were performed on different sensitive tumor cell lines and on an MDR tumor cell line, and the Tf-conjugated NPs presented significantly higher antiproliferative activity than the nontargeted counterparts in all tested cell lines. Due to the promising antitumor activity of the Tf-decorated NPs, further studies were performed using the MDR cells (NCI/ADR-RES cell line) comparatively to one sensitive cell line (HeLa). The cytotoxicity of NPs was evaluated in 3D tumor spheroids and, similarly to the results achieved in the 2D assays, the Tf-conjugated NPs were more effective at reducing the spheroid's growth. The targeted Tf-NPs were also able to inhibit tumor cell migration, presented a higher cell internalization and induced a greater number of apoptotic events in both cell lines. Therefore, these findings evidenced the advantages of Tf-decorated NPs over the nontargeted counterparts, with the Tf-conjugated NPs containing an organoselenium compound representing a promising drug delivery system to overcome MDR and enhance the efficacy of cancer therapy.

8.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511201

RESUMO

The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Simulação de Acoplamento Molecular , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Paládio/farmacologia , Paládio/química , Ouro/química , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estrutura Molecular , Cristalografia por Raios X , Antineoplásicos/química
9.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259435

RESUMO

Limonium species represent a source of bioactive compounds that have been widely used in folk medicine. This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. Searches were performed in the electronic databases PubMed/MEDLINE, Scopus, and Scielo and via a manual search. In vivo or in vitro studies that evaluated the anticancer or anti-proliferative effect of at least one Limonium species were included. In total, 942 studies were identified, with 33 articles read in full and 17 studies included for qualitative synthesis. Of these, 14 (82.35%) refer to in vitro assays, one (5.88%) was in vivo, and two (11.76%) were designed as in vitro and in vivo assays. Different extracts and isolated compounds from Limonium species were evaluated through cytotoxic analysis against various cancer cells lines (especially hepatocellular carcinoma-HepG2; n = 7, 41.18%). Limonium tetragonum was the most evaluated species. The possible cellular mechanism involved in the anticancer activity of some Limonium species included the inhibition of enzymatic activities and expression of matrix metalloproteinases (MMPs), which suggested anti-metastatic effects, anti-melanogenic activity, cell proliferation inhibition pathways, and antioxidant and immunomodulatory effects. The results reinforce the potential of Limonium species as a source for the discovery and development of new potential cytotoxic and anticancer agents. However, further studies and improvements in experimental designs are needed to better demonstrate the mechanism of action of all of these compounds.

10.
Ann Pharm Fr ; 81(6): 950-967, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37328029

RESUMO

The Pipercubeba, it is one spice, widely consumed in Europe, which has several bioactive molecules, between those a lignan named cubebin. Cubebin has several known biological activities, such as analgesic activity and anti-inflammatory, trypanocidal activity, leishmanicidal and antitumor activity. The objective of this study was to evaluate the antiproliferative activity "in vitro" cubebin in eight different human tumor cell lines. It was fully characterized by IR analysis, NMR, mass spectrometry, DSC, TGA, residual solvent and elemental analysis. The antitumor activity of cubebin was evaluated "in vitro" on eight different human tumor cell lineages. Cubebin showed GI50≤30µg/mL for lineage cell U251 (glioma CNS), 786-0 (kidney), PC-3 (prostate), HT-29 (colon rectum). For K562 cells (leukemia), cubebin presented GI50≤to 4.0mg/mL. For the other lineages cells, MCF-7 (breast) and NCI-H460 to cubebin can be considered inactive because of GI50>250mg/mL. Analyzing the selectivity index for cubebin, it can be observed that high selectivity of cubebin to K562 lineage cells (leukemia). Analyzing the cytotoxic potential of cubebin was observed that probably acts cubebin altering metabolism, inhibiting cell growth - a cytostatic effect, showing no cytocidal effect on any lineage cell.

11.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174010

RESUMO

Euterpe oleracea (açaí) fruit has approximately 15% pulp, which is partly edible and commercialized, and 85% seeds. Although açaí seeds are rich in catechins-polyphenolic compounds with antioxidant, anti-inflammatory, and antitumor effects-almost 935,000 tons/year of seeds are discarded as industrial waste. This work evaluated the antitumor properties of E. oleracea in vitro and in vivo in a solid Ehrlich tumor in mice. The seed extract presented 86.26 ± 0.189 mg of catechin/g of extract. The palm and pulp extracts did not exhibit in vitro antitumor activity, while the fruit and seed extracts showed cytotoxic effects on the LNCaP prostate cancer cell line, inducing mitochondrial and nuclear alterations. Oral treatments were performed daily at 100, 200, and 400 mg/kg of E. oleracea seed extract. The tumor development and histology were evaluated, along with immunological and toxicological parameters. Treatment at 400 mg/kg reduced the tumor size, nuclear pleomorphism, and mitosis figures, increasing tumor necrosis. Treated groups showed cellularity of lymphoid organs comparable to the untreated group, suggesting less infiltration in the lymph node and spleen and preservation of the bone marrow. The highest doses reduced IL-6 and induced IFN-γ, suggesting antitumor and immunomodulatory effects. Thus, açaí seeds can be an important source of compounds with antitumor and immunoprotective properties.

12.
Life (Basel) ; 13(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37109486

RESUMO

Cancer is a major health problem with significant morbidity and mortality. In addition, plants are a source of metabolites with diverse biological properties, including antitumor potential. In this study, we investigated the in vitro murine lymphoma L5178Y-R cell growth inhibition, human peripheral blood mononuclear cells (PBMC) toxicity and proliferation, and antioxidant, hemolytic, and anti-hemolytic activities of methanol extracts from 15 plants of traditional use in Mexico. Justicia spicigera caused the highest tumor cell growth inhibition with a half maximal inhibitory concentration (IC50) of 29.10 µg/mL and a selectivity index >34.36 compared with those of PBMC, whereas Mimosa tenuiflora showed the highest lymphoproliferative activity from 200 µg/mL compared with that induced by concanavalin A. In addition, M. tenuiflora showed an antioxidant effect (IC50 = 2.86 µg/mL) higher than that of ascorbic acid. Regarding the hemolytic and anti-hemolytic activity, all extracts presented significant anti-hemolytic activity. The extract of J. spicigera is emerging as a possible source of effective antineoplastic compounds.

13.
Drug Chem Toxicol ; : 1-9, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912194

RESUMO

Alpha-terpineol is a monoterpene alcohol found in essential oils from medicinal plants with some well-known pharmacological activities and widely used in cosmetics. However, the toxicological effects and additional pharmacological activities need to be clarified. Thus, the study evaluated the toxic, cytotoxic, genotoxic, hemolytic, and oxidative potential of alpha-terpineol in non-clinical bioassays. Different concentrations of alpha-terpineol were used in bioassays, including MTT (50, 100, 200, and 400 µg/mL), Artemia salina (6.25-400 µg/mL), Allium cepa (10, 50, and 100 µg/mL), comet assay (100, 200, and 500 µg/mL), cytokinesis-block micronucleus (100, 250, and 500 µg/mL), confocal microscopy for apoptosis quantification (100 and 500 µg/mL), hemolysis and Saccharomyces cerevisiae central disk test (10, 35, and 75 µg/mL). For the MTT test, alpha-terpineol was more cytotoxic on melanoma murine B16-F10 cells rather than macrophages. For A. salina test, alpha-terpineol showed LC50 of 68.29 and 76.36 µg/mL for 24 h and 48 h of exposure time, respectively. Meanwhile, alpha-terpineol was also cytotoxic to meristematic cells, which revealed inhibition of cellular division and mutagenic action by formation of bridges and delayed anaphases. The compound increased damage index and frequency of damage corroborated by the presence of micronuclei, bridges and nuclear buds at 500 µg/mL, but it caused neither hemolysis, oxidative damage on the S. cerevisiae nor cell death in normal fibroblasts. The findings indicate alpha-terpineol has cytotoxic potential by cytogenetic and molecular mechanisms associated with apoptosis and probable target effects against melanoma cells.

14.
Front Mol Biosci ; 10: 1146820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968279

RESUMO

In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by d norm function was investigated and showed π-π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to H⋅H C⋅H, O⋅H, Br⋅H, and F⋅H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.

15.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839993

RESUMO

Traditional medicine uses resin oils extracted from plants of the genus Copaifera for several purposes. Resin oils are being studied to understand and profile their pharmacological properties. The aim of this work was to prepare and to characterize conventional and pegylated liposomes incorporating resin oils or the hexanic extract obtained from Copaifera sabulicola (copaiba) leaves. The cytotoxic effect of these products was also investigated. Conventional and stealth liposomes with copaiba extract showed similar average diameters (around 126 nm), encapsulation efficiencies greater than 75% and were stable for 90 days. A cytotoxicity test was performed on murine glioma cells and the developed liposomes presented antiproliferative action against these cancer cells at the average concentration of 30 µg/mL. Phytochemicals encapsulated in PEGylated liposomes induced greater reduction in the viability of tumor cells. In addition, bioassay-s measured the cytotoxicity of copaiba resin oil (Copaifera sabulicola) in liposomes (conventional and PEGylated), which was also checked against pheochromocytoma PC12 cells. Its safety was verified in normal rat astrocytes. The results indicate that liposomes encapsulating copaiba oil showed cytotoxic activity against the studied tumor strains in a dose-dependent fashion, demonstrating their potential applications as a chemotherapeutic bioactive formulation.

16.
Int J Pharm, v.646, 123420, nov. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5143

RESUMO

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.

17.
Int J Pharm, v. 646, 123420, nov. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5121

RESUMO

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.

18.
Int J Pept Res Ther, v. 29, n. 20, fev. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4817

RESUMO

Venom peptides are interesting molecular models for the development of biotechnological strategies applicable in generating therapeutic agents and/or experimental tools for basic and applied research. The present study aimed to search for peptides from Bothrops atrox snake venom with anticancer potential activity against HepG2 liver tumor cell line, determine their cytotoxic action, and analyze the structure–function relationship. The novel peptide Batroxin I (M.W. 1.38 kDa) was isolated by molecular exclusion and reversed phase chromatography methods. The Batroxin I presented a selective cytotoxicity towards tumor cells, reducing the viability of HepG2 cells by 94.6% with IC50 of 0.72 μg/mL, and showing a low toxicity against peripheral blood mononuclear cells. Analysis of the apoptotic and necrotic peptide effects revealed that it induced apoptosis by intrinsic pathway activation. The amino acid sequence of Batroxin I was determined by de novo sequencing as < EKWPRPDAPIPP (where < E = pyroglutamic acid); hence, it is an unpublished peptide that belongs to the class of bradykinin-enhancing peptides and cell penetration peptide. This is one of the first reports on the cytotoxic antitumor activity of a bradykinin-enhancing peptide. Our results indicate that this peptide could serve not only as a template for the development of new drugs, but also as an adjuvant to less effective marketed drugs to treat cancer and other diseases.

19.
Epigenomics ; 15(24): 1309-1322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38174426

RESUMO

Background: Dulaglutide emerged as a promising therapeutic option for diabetes mellitus Type 2 (DM2). Aims: Owing to epigenetic similarities between the pathophysiology of DM2 and breast cancer (BC), we investigated the antitumor effect of dulaglutide. Materials & methods: To investigate the effect of dulaglutide, we analyzed the expression of methylated gene promoter regions in BC (ESR1, CDH1 and ADAM33). Results: Dulaglutide increased the expression of ESR1, CDH1 and ADAM33 up to fourfold in the MDA-MB-231 lineage by demethylating the gene promoter regions. This effect was translated to in vivo antitumoral activity and revealed significant tumor inhibition by combining the half-dose of methotrexate with dulaglutide. Conclusion: This therapy may mitigate the severe side effects commonly associated with chemotherapy.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Hipoglicemiantes/uso terapêutico , Proteínas ADAM/uso terapêutico
20.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433032

RESUMO

Colorectal cancer has been considered a worldwide public health problem since current treatments are often ineffective. Irinotecan is a frontline chemotherapeutic agent that has dose-limiting side effects that compromise its therapeutic potential. Therefore, it is necessary to develop a novel, targeted drug delivery system with high therapeutic efficacy and an improved safety profile. Here, micellar formulations composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2k) containing irinotecan were proposed as a strategy for colorectal cancer therapy. Firstly, the irinotecan-loaded micelles were prepared using the solvent evaporation method. Then, micelles were characterized in terms of size, polydispersity, zeta potential, entrapment efficiency, and release kinetics. Cytotoxicity and in vivo antitumor activity were evaluated. The micelles showed size around 13 nm, zeta potential near neutral (-0.5 mV), and encapsulation efficiency around 68.5% (irinotecan 3 mg/mL) with a sustained drug release within the first 8 h. The micelles were evaluated in a CT26 tumor animal model showing inhibition of tumor growth (89%) higher than free drug (68.7%). Body weight variation, hemolytic activity, hematological, and biochemical data showed that, at the dose of 7.5 mg/kg, the irinotecan-loaded micelles have low toxicity. In summary, our findings provide evidence that DSPE-mPEG2k micelles could be considered potential carriers for future irinotecan delivery and their possible therapeutic application against colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA