Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
Liver Int ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148354

RESUMO

With the increasing rate of infections caused by multidrug-resistant organisms (MDRO), selecting appropriate empiric antibiotics has become challenging. We aimed to develop and externally validate a model for predicting the risk of MDRO infections in patients with cirrhosis. METHODS: We included patients with cirrhosis and bacterial infections from two prospective studies: a transcontinental study was used for model development and internal validation (n = 1302), and a study from Argentina and Uruguay was used for external validation (n = 472). All predictors were measured at the time of infection. Both culture-positive and culture-negative infections were included. The model was developed using logistic regression with backward stepwise predictor selection. We externally validated the optimism-adjusted model using calibration and discrimination statistics and evaluated its clinical utility. RESULTS: The prevalence of MDRO infections was 19% and 22% in the development and external validation datasets, respectively. The model's predictors were sex, prior antibiotic use, type and site of infection, MELD-Na, use of vasopressors, acute-on-chronic liver failure, and interaction terms. Upon external validation, the calibration slope was 77 (95% CI .48-1.05), and the area under the ROC curve was .68 (95% CI .61-.73). The application of the model significantly changed the post-test probability of having an MDRO infection, identifying patients with nosocomial infection at very low risk (8%) and patients with community-acquired infections at significant risk (36%). CONCLUSION: This model achieved adequate performance and could be used to improve the selection of empiric antibiotics, aligning with other antibiotic stewardship program strategies.

2.
Front Microbiol ; 15: 1392333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104589

RESUMO

Introduction: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. Methods: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. Results: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). Conclusion: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.

3.
Rev. salud pública Parag ; 14(2)ago. 2024.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1570049

RESUMO

Objetivo: Determinar la influencia de los determinantes sociales de la salud en la resistencia antibiótica, en los países de América Latina. Metodología: Estudio documental de tipo revisión sistemática, con análisis interpretativo de la información, se incluyeron a artículos publicados entre 2018 y 2023 de las bases de datos: PubMed, ScienceDirect, Cochrane, Dialnet, Google académico, BVS, LilaCs, Scielo, Epistemonikos, CUIDEN, TripDatabase, BASE Search, Jurn, WorldWideScience, Refseek, Redalyc, EbscoHost y CONRICYT; en los idiomas español, inglés y portugués, que tuvieran como población comunidades y países de América Latina; se excluyeron aquellos con enfoque veterinario o agropecuario. Resultados: Se obtuvieron 4,625 en la búsqueda inicial y posterior a la aplicación de criterios de selección, se analizaron 28 artículos analizó la calidad metodológica, la bibliometría y el análisis temático a través de la interpretación de la información contenida. Conclusión: Los determinantes sociales de la salud estructurales asociados con la resistencia antimicrobiana fueron las políticas públicas, el género, los factores macroeconómicos, el nivel socioeconómico familiar, educativo y la gobernanza.


Objective: Determine the influence of social determinants of health on antibiotic resistance in Latin American countries. Methodology: Systematic review type documentary study with interpretive analysis of the information, articles published between 2018 and 2023 from the following databases were included: PubMed, ScienceDirect, Cochrane, Dialnet, Google scholar, BVS, LilaCs, SciELO, Epistemonikos, CUIDEN, TripDatabase, BASE Search, Jurn, WorldWideScience, Refseek, Redalyc, EbscoHost and CONRICYT; in the Spanish, English and Portuguese languages, which had Latin American communities and countries as their population; Those with a veterinary or agricultural focus were excluded. Results: 4,625 were obtained in the initial search and after the application of selection criteria, 28 articles were analyzed that analyzed the methodological quality, bibliometrics and thematic analysis through the interpretation of the information contained. Conclusion: The social determinants of structural health associated with antimicrobial resistance were public policies, gender, macroeconomic factors, family socioeconomic level, education, and governance.

4.
Microorganisms ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065053

RESUMO

Antimicrobial resistance is a major global health problem, and, among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) represents a serious threat. MRSA causes a wide range of infections, including bacteremia, which, due to the limited use of ß-lactams, is difficult to treat. This study aimed to analyze 51 MRSA isolates collected in 2018 from samples of patients with bacteremia from two hospitals of the Metropolitan Health Service of Santiago, Chile, both in their resistance profile and in the identification of virulence factors. In addition, genomic characterization was carried out by the WGS of an isolate that was shown to be the one of greatest concern (N°. 42) due to its intermediate resistance to vancomycin, multiple virulence factors and being classified as ST8 PVL-positive. In our study, most of the isolates turned out to be multidrug-resistant, but there are still therapeutic options, such as tetracycline, rifampicin, chloramphenicol and vancomycin, which are currently used for MRSA infections; however, 18% were PVL positive, which suggests greater virulence of these isolates. It was determined that isolate N°42 is grouped within the USA300-LV strains (ST8, PVL+, COMER+); however, it has been suggested that, in Chile, a complete displacement of the PVL-negative ST5 clone has not occurred.

5.
Antibiotics (Basel) ; 13(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061325

RESUMO

The eradication of Helicobacter pylori is a valid strategy for preventing gastric cancer; however, the therapeutic failure of first-line treatments in Colombia is associated with high resistance to metronidazole and amoxicillin. This study explored alternative antibiotics and analyzed point mutations in resistance genes to furazolidone and rifampicin in order to include them in rescue therapy regimens. A total of 239 complete genomes of Helicobacter pylori Colombian strains were compared to that of the ATCC 26695 strain to identify mutations in the rpoB and porD genes for rifampicin and furazolidinone resistance, respectively. While rifampicin resistance mutations were not found, only 0.84% of the isolates showed the porD gene, suggesting that Helicobacter pylori is sensitive to these antibiotics. A phylogenomic analysis of Helicobacter pylori revealed an independent lineage in Colombia (hspColombia). The absence of point mutations in the rpoB gene, together with the scarce mutations identified in the porD gene of Helicobacter pylori, suggest that the hspColombia isolates are sensitive to rifampicin and furazolidone, which could be key to including these antibiotics in the rescue therapies against Helicobacter pylori.

6.
Antibiotics (Basel) ; 13(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061347

RESUMO

In this research, several analyses were carried out on concentrated fractions of Mexican oregano essential oil (Poliomintha longiflora Gray) in order to determine its ability to inhibit the growth and the motility of Escherichia coli (swimming), Pseudomonas aeruginosa (swimming), and Proteus vulgaris (swarming); these Gram-negative bacteria associated with urinary tract infections are motile due to the presence of flagella, which is considered an important virulence factor that favors their motility when trying to reach the target organ and cause an infection. Also, the resistance pattern to antibiotics of each strain was determined. The results showed resistance pattern (8 out of 12 antibiotics tested) for P. aureginosa, while E. coli and P. vulgaris were resistant to 4 antibiotics out of the 12 tested. On the other hand, fractionated oregano caused an inhibition of growth and a reduction in motility, varying between fractions and among bacteria. Fraction 4 showed major growth reduction, with MBC values ranging from 0.002 to 23.7 mg/mL. Treatment with fractionated oregano (F1, F2, F3, F4) reduced the motility by 92-81% for P. vulgaris, 90-83% for E. coli, and 100-8.9% for P. aeruginosa. These results demonstrated a higher performance with a lower application dose due to its high content of Carvacrol and Thymol; unlike other concentrated fractions, this synergy of oxygenated monoterpenes may cause greater antimicrobial activity.

7.
Access Microbiol ; 6(6)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045256

RESUMO

Introduction. Streptococcus pyogenes [group A streptococci (GAS)] is the causative agent of pharyngitis and various other syndromes involving cellulitis, streptococcal toxic shock syndrome (STSS), and necrotising fasciitis. Although the prevalence of GAS infections globally remains high, necessitating the widespread use of ß-lactam antibiotics, GAS have remained largely susceptible to these agents. However, there have been several reports of GAS with reduced susceptibility harbouring mutations in genes for penicillin-binding proteins (PBPs). The objectives of this study were to examine the in vitro ß-lactam susceptibility patterns of group A streptococci, determine the prevalence of drug resistance, and ascertain whether such resistance could be attributed to mutations in specific PBP genes. Methods. In this study, we sought to use Sanger sequencing to identify mutations in PBP genes of Streptococcus pyogenes isolated from patients that required inpatient and outpatient care that could confer reduced PBP affinity for penicillin and/or cephalosporin antibiotics. All isolates were screened for susceptibility to penicillin, amoxicillin, and cefazolin using E-test strips. Results. While there were no documented cases of reduced susceptibility to penicillin or amoxicillin, 13 isolates had reduced susceptibility to cefazolin. Examination of pbp1a by Sanger sequencing revealed several isolates with single amino acid substitutions, which could potentially reduce the affinity of PBP 1A for cefazolin and possibly other first-generation cephalosporins. Conclusion. Penicillin and penicillin-derived antibiotics remain effective treatment options for GAS infections, but active surveillance is needed to monitor for changes to susceptibility patterns against these and other antibiotics and understand the genetic mechanisms contributing to them.

8.
Infect Genet Evol ; 123: 105644, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038632

RESUMO

IncQ-type plasmids have become important vectors in the dissemination of blaGES among different bacterial genera and species from different environments around the world, and studies estimating the occurrence of Guiana extended-spectrum (GES)-type ß-lactamases are gaining prominence. We analyzed the genetic aspects of two IncQ1 plasmids harboring different blaGES variants from human and environmental sources. The blaGES variants were identified using polymerase chain reaction (PCR) in Aeromonas veronii isolated from hospital effluent and Klebsiella variicola isolated from a rectal swab of a patient admitted to the cardiovascular intensive care unit in a different hospital. Antimicrobial-susceptibility testing and transformation experiments were performed for phenotypic analysis. Whole-genome sequencing was performed using Illumina and Oxford Nanopore platforms. The comparative analysis of plasmids was performed using BLASTn, and the IncQ1 plasmids showed a high identity and similar size. A. veronii harbored blaGES-7 in a class 1 integron (In2061), recently described by our group, and K. variicola carried blaGES-5 in the known class 1 integron. Both integrons showed a fused gene cassette that encodes resistance to aminoglycosides and fluoroquinolones, with an IS6100 truncating the 3'-conserved segment. The fused genes are transcribed together, although the attC site is disrupted. These gene cassettes can no longer be mobilized. This study revealed a mobilome that may contribute to the dissemination of GES-type ß-lactamases in Brazil. Class 1 integrons are hot spots for bacterial evolution, and their insertion into small IncQ-like plasmids displayed successful recombination, allowing the spread of blaGES variants in various environments. Therefore, they can become prevalent across clinically relevant pathogens.


Assuntos
Plasmídeos , beta-Lactamases , Plasmídeos/genética , Brasil , beta-Lactamases/genética , Humanos , Genômica/métodos , Antibacterianos/farmacologia , Klebsiella/genética , Klebsiella/efeitos dos fármacos , Aeromonas/genética , Aeromonas/efeitos dos fármacos , Aeromonas/isolamento & purificação , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Genoma Bacteriano , Integrons/genética
9.
Front Microbiol ; 15: 1395953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946902

RESUMO

Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.

10.
Front Microbiol ; 15: 1412775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989032

RESUMO

Acinetobacter pittii has increasingly been associated with several types of hospital-acquired severe infections. Genes implicated in carbapenem resistance, tigecycline resistance, or genes encoding extended spectrum cephalosporinases, such as blaADC, are commonly found in isolates implicated in these infections. A. pittii strains that are pandrug resistant have occasionally been identified. Food for human consumption, animals and plants are environmental sources of this pathogen. An alarming situation is that A. pitti has been identified as responsible for outbreaks in different regions worldwide. In this study, 384 genomes of A. pittii were analyzed, comprising sequences from clinical and non-clinical origins from 32 countries. The objective was to investigate if clinical strains possess genetic traits facilitating hospital adaptation. Results indicate significant genomic variability in terms of size and gene content among A. pittii isolates. The core genome represents a small portion (25-36%) of each isolate's genome, while genes associated with antibiotic resistance and virulence predominantly belong to the accessory genome. Notably, antibiotic resistance genes are encoded by a diverse array of plasmids. As the core genome between environmental and hospital isolates is the same, we can assume that hospital isolates acquired ARGs due to a high selective pressure in these settings. The strain's phylogeographic distribution indicates that there is no geographical bias in the isolate distribution; isolates from different geographic regions are dispersed throughout a core genome phylogenetic tree. A single clade may include isolates from extremely distant geographical areas. Furthermore, strains isolated from the environment or animal, or plant sources frequently share the same clade as hospital isolates. Our analysis showed that the clinical isolates do not already possess specific genes, other than antibiotic-resistant genes, to thrive in the hospital setting.

11.
Food Microbiol ; 123: 104567, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038901

RESUMO

This study aimed to determine the prevalence of V. parahaemolyticus in oysters from the northwestern coast of Mexico and to identify the serotypes, virulence factors, and antibiotic resistance of the strains. Oyster samples were collected from 2012 to 2020 from the northwest coast of Mexico; biochemical and molecular methods were used to identify V. parahaemolyticus from oysters; antiserum reaction to determine V. parahaemolyticus serotypes, and PCR assays were performed to identify pathogenic (tdh and/or trh) or pandemic (toxRS/new, and/or orf8) strains and antibiotic resistance testing. A total of 441 oyster samples were collected and tested for V. parahaemolyticus. Forty-seven percent of oyster samples were positive for V. parahaemolyticus. Ten different O serogroups and 72 serovars were identified, predominantly serotype O1:KUT with 22.2% and OUT:KUT with 17.3%. Twenty new serotypes that had not been previously reported in our region were identified. We detected 4.3% of pathogenic clones but no pandemic strains. About 73.5% of strains were resistant to at least one antibiotic, mainly ampicillin and ciprofloxacin; 25% were multi-drug resistant. In conclusion, the pathogenic strains in oysters and antibiotic resistance are of public health concern, as the potential for outbreaks throughout northwestern Mexico is well established.


Assuntos
Antibacterianos , Ostreidae , Frutos do Mar , Vibrio parahaemolyticus , Fatores de Virulência , Animais , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , México/epidemiologia , Ostreidae/microbiologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Frutos do Mar/microbiologia , Farmacorresistência Bacteriana , Sorogrupo , Virulência/genética , Testes de Sensibilidade Microbiana
12.
Braz J Microbiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044104

RESUMO

Acinetobacter baumannii belongs to the ESKAPE group. It is classified as a critical priority group by the World Health Organization and a global concern on account of its capacity to acquire and develop resistance mechanisms to multiple antibiotics. Data from the United States indicates 500 deaths annually. Resistance mechanisms of this bacterium include enzymatic pathways such as ß-lactamases, carbapenemases, and aminoglycoside-modifying enzymes, decreased permeability, and overexpression of efflux pumps. A. baumannii has been demonstrated to possess efflux pumps, which are classified as members of the MATE family, RND and MFS superfamilies, and SMR transporters. The aim of our work was to assess the distribution of efflux pumps and their regulatory gene expression in clinical strains of A. baumannii isolated from burned patients. METHODS: From the Clinical Microbiology Laboratory at the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra collection in Mexico, 199 strains were selected. Antibiotics susceptibilities were performed by broth microdilutions to determine minimal inhibitory concentrations. Phenotypic assays with efflux pump inhibitors were conducted using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and phenylalanine-arginine ß-naphthylamide (PAßN) in conjunction with amikacin, ceftazidime, imipenem, meropenem and levofloxacin. A search was conducted for structural genes that are linked to efflux pumps, and the relative expression of the adeR, adeS, and adeL genes was analyzed. RESULTS: Among a total of 199 strains, 186 exhibited multidrug resistance (MDR). Fluoroquinolones demonstrated the highest resistance rates, while minocycline and amikacin displayed comparatively reduced resistance rates (1.5 and 28.1, respectively). The efflux activity of fluorquinolones exhibited the highest phenotypic detection (from 85 to 100%), while IMP demonstrated the lowest activity of 27% with PAßN and 43.3% with CCCP. Overexpression was observed in adeS and adeL, with adeR exhibiting overexpression. Concluding that clinical strains of A. baumannii from our institution exhibited efflux pumps as one of the resistance mechanisms.

13.
Braz J Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028534

RESUMO

The increasing frequency of antibiotic-resistant bacteria is a constant threat to global human health. Therefore, the pathogens of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp.) are among the most relevant causes of hospital infections responsible for millions of deaths every year. However, little has been explored about the danger of microorganisms resistant to biocides such as antiseptics and disinfectants. Widely used in domestic, industrial, and hospital environments, these substances reach the environment and can cause selective pressure for resistance genes and induce cross-resistance to antibiotics, further aggravating the problem. Therefore, it is necessary to use innovative and efficient strategies to monitor the spread of genes related to resistance to biocides. Whole genome sequencing and bioinformatics analysis aiming to search for sequences encoding resistance mechanisms are essential to help monitor and combat these pathogens. Thus, this work describes the construction of a bioinformatics tool that integrates different databases to identify gene sequences that may confer some resistance advantage about biocides. Furthermore, the tool analyzed all the genomes of Brazilian ESKAPE isolates deposited at NCBI and found a series of different genes related to resistance to benzalkonium chloride, chlorhexidine, and triclosan, which were the focus of this work. As a result, the presence of resistance genes was identified in different types of biological samples, environments, and hosts. Regarding mobile genetic elements (MGEs), around 52% of isolates containing genes related to resistance to these compounds had their genes identified in plasmids, and 48.7% in prophages. These data show that resistance to biocides can be a silent, underestimated danger spreading across different environments and, therefore, requires greater attention.

14.
Heliyon ; 10(12): e33368, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027427

RESUMO

Background: Carbapenemase-producing Enterobacterales (CPE) represents a significant threat to global health. This study aimed to characterize clinically and molecularly the CPE isolated from rectal swabs of patients in the intensive care units (ICUs) of a tertiary hospital in Cali, Colombia. Methods: This was a cross-sectional observational study. Rectal swabs from patients admitted to the ICUs were collected. Bacterial identification and carbapenemase production were determined using phenotypic and molecular methods. Demographic and clinical data were extracted from electronic medical records. Results: The study included 223 patients. Thirty-six patients (36/223, 16.14 %) were found to be colonized or infected by CPE. Factors such as prolonged stay in the ICU, previous exposure to carbapenem antibiotics, use of invasive procedures, and admission due to trauma were associated with CPE. Klebsiella pneumoniae (52.5 %) was the most prevalent microorganism, and the dominant carbapenemases identified were KPC (57.8 %) and NDM (37.8 %). Conclusion: Distinguishing carbapenemase subtypes can provide crucial insights for controlling dissemination in ICUs in Cali, Colombia.

15.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos
16.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930498

RESUMO

Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.

17.
Microbiol Resour Announc ; 13(7): e0019224, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842343

RESUMO

Uropathogenic Escherichia coli (UPEC) remains the main etiological agent of urinary tract infections affecting females and males. The draft genome sequence of three strains of UPEC isolated from senior citizens and pregnant women in the state of Puebla, Mexico, is reported here.

18.
Antibiotics (Basel) ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927148

RESUMO

Street food may be a vehicle of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) to humans. Foods contaminated with ARB entail serious problems or challenges in the fields of medical care, animal husbandry, food industry, and public health worldwide. The objectives of this systematic review were to identify and evaluate scientific reports associated with ARB isolated from various street foods. "Preferred reporting items for systematic reviews and meta-analysis" (PRISMA) guidelines were followed. The bibliographic material covers a period from January 2015 to April 2024. Six electronic scientific databases were searched individually for full-text articles; only those papers that met the inclusion and exclusion criteria were selected. Seventeen papers were included in this systematic review. This study highlighted the wide distribution of ARB resistant to ß-lactams and other antibiotics, posing significant health risks to consumers. High resistance levels were observed for antibiotics such as ampicillin, ceftriaxone, and tetracycline, while some antibiotics, such as ceftazidime, clavulanic acid, cefoperazone, cotrimoxazole, doxycycline, doripenem, fosfomycin, vancomycin, and piperacillin-tazobactam, demonstrated 100% susceptibility. The prevalence of ARB in street foods varied between 5.2% and 70.8% among different countries. The multiple resistance of various bacteria, including Escherichia coli, Staphylococcus, Salmonella, and Klebsiella, to multiple classes of antibiotics, as well as environmental factors contributing to the spread of antibiotic resistance (AR), emphasize the urgent need for comprehensive approaches and coordinated efforts to confront antimicrobial resistance (AMR) under the "One Health" paradigm.

19.
Antibiotics (Basel) ; 13(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927157

RESUMO

Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.

20.
Antibiotics (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927231

RESUMO

The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA