Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114443

RESUMO

HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Neovascularização Retiniana , Proteínas Roundabout , Adulto , Feminino , Humanos , Masculino , Angiogênese , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia
2.
Mol Cell Endocrinol ; 592: 112328, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996835

RESUMO

Osteoporosis is the most common metabolic bone disorder and is associated with a high incidence of fractures. Angiogenesis and adequate blood flow are important during bone repair and maintenance. Estrogens play a key role in bone formation, in the prevention of bone resorption and vasculature maintenance. Hormone replacement therapy (HRT) has been used with great benefits for bone fracture prevention but has been linked to the development of serious important side effects, including cancer and stroke. Phytoestrogens are an attractive alternative to HRT because their chemical structure is similar to estradiol but, they could behave as selective modulators: acting as antagonists of estrogen receptors in the breast and endometrium and as agonists in the vascular endothelium and bone. Hops contain a wide variety of phytoestrogens that have individually been shown to possess estrogenic activity by either blocking or mimicking. In this study we have to evaluate the in vitro effects and mechanisms of action of hops extracts on the osteogenic and adipogenic capacity of bone marrow progenitor cells (BMPCs), and the angiogenic potential of EA.hy926 endothelial cells. We show that hops extracts increase the proliferative capacity of BMPCs and promote their osteogenic differentiation while decreasing their pro-osteoclastogenic capacity; and that these effects are mediated by the MAPK pathway. Additionally, hops extracts prevent the adipogenic differentiation of BMPCs and promote endothelial cell activity, by mechanisms also partially mediated by MAPK.


Assuntos
Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Endoteliais , Humulus , Osteogênese , Extratos Vegetais , Humulus/química , Osteogênese/efeitos dos fármacos , Humanos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Extratos Vegetais/farmacologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Fitoestrógenos/farmacologia , Adipogenia/efeitos dos fármacos , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Linhagem Celular
3.
Cytokine ; 182: 156706, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053078

RESUMO

Oenothein B (OeB), a dimeric ellagitannin with a macrocyclic structure, is reported to have beneficial effects, including antioxidant, antitumor, antiviral, and antimutagenic effects, on human health. Despite the remarkable properties of OeB, its role in neovascularization process has not yet been evaluated. Thus, this study aimed to evaluate the angiogenic activity of OeB using a chorioallantoic membrane (CAM) assay at different concentrations (6.25, 12.5, and 25 µg/µL), employing digital imaging and histological analysis. Furthermore, to elucidate the mechanisms by which OeB influences angiogenesis, we assessed the levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) in CAM using immunohistochemical analysis. All concentrations of OeB significantly increased (p < 0.05) the percentage of vascularization as well as the levels of all the angiogenesis-associated parameters evaluated, indicating the pronounced pro-angiogenic activity of OeB. Our results showed that inflammation was one of the most relevant phenomena observed in CAM histology along with angiogenesis. In addition, a significant increase in VEGF and TNF-α levels was observed in all the CAMs compared to the negative control (p < 0.05). We suggest that OeB may induce the presence of inflammatory cells in CAM, leading to increased VEGF and TNF-α levels that result in the induction of angiogenesis. Therefore, OeB presents a favorable profile that could be further explored for the development of drugs for pro-angiogenic and tissue repair therapies.


Assuntos
Membrana Corioalantoide , Taninos Hidrolisáveis , Folhas de Planta , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Folhas de Planta/química , Membrana Corioalantoide/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Embrião de Galinha , Eugenia/química , Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos
4.
Biomimetics (Basel) ; 9(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39056872

RESUMO

BACKGROUND: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric analysis of the inflammatory profile during the initial phase of bone repair. MATERIALS AND METHODS: A total of 72 Albinus Wistar rats were used for the study, divided into six groups, with 12 animals per group, and two experimental periods, 7 and 15 days. The groups were as follows: the CG (clot), BG (Bio-Gide®), JS (Jason®), CS (Collprotect®), GD (GemDerm®), and GDF (GemDerm Flex®). RESULTS: Data showed that the BG group demonstrated an inflammatory profile with an ideal number of inflammatory cells and blood vessels, indicating a statistically significant difference between the JS and CS groups and the BG group in terms of the number of inflammatory cells and a statistically significant difference between the JS and CS groups and the GD group in terms of angiogenesis (p < 0.05). CONCLUSIONS: We conclude that different origins and ways of obtaining them, as well as the thickness of the membrane, can interfere with the biological response of the material.

5.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062847

RESUMO

Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-ß and IL-1ß was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.


Assuntos
Proliferação de Células , Vesículas Extracelulares , Macrófagos , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/citologia , Movimento Celular , Células THP-1 , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Queratinócitos/metabolismo , Queratinócitos/citologia , Citocinas/metabolismo
6.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1563621

RESUMO

Introducción: los glucocorticoides (GC) han sido ampliamente utilizados en el tratamiento de patologías oculares debido a sus efectos antiinflamatorios y anti-angiogénicos. Se ha sugerido que el mecanismo de acción anti-angiogénico de los GC puede estar relacionado con la enzima fosfatidilinositol-3-cinasa (PI3K), la cual desempeña un papel crucial en la angiogénesis mediada por el receptor de acetilcolina nicotínico alfa 7 (α7-nAChR). La PI3K es una enzima lipoproteica heterodimérica compuesta por las subunidades; reguladora (p85) y catalítica (p110). Objetivo: esta revisión examina la evidencia de cómo los GC modulan la vía de señalización de PI3K activada por α7-nAChR en el proceso de angiogénesis in vitro. Metodología: se realizó una revisión bibliográfica utilizando los motores de búsqueda PubMed y Web of Science, relacionando los conceptos "endothelial cell", "α7-nAChR", "PI3K" y "glucocorticoid". Resultados: se seleccionaron 30 artículos que informaron sobre la expresión de α7-nAChR y PI3K en células endoteliales humanas. Además, del efecto de dexametasona sobre las subunidades de PI3K y Akt (proteína cinasa B) en modelos humano, murino y porcino. A partir de estos hallazgos, se propuso un mecanismo mediante el cual los GC ejercen su efecto anti-angiogénico a través de la modulación en la expresión de la subunidad inhibitoria p85 de PI3K activada por α7-nAChR en células endoteliales humanas. Conclusión: los antecedentes evidencian que dexametasona, ejerce su mecanismo de acción anti-angiogénico mediante el incremento de la expresión de la subunidad inhibitoria p85 de PI3K activada por α7-nAChR.


Introduction: glucocorticoids (GC) have been widely used in the treatment of ocular pathologies due to their anti-inflammatory and anti-angiogenic effects. It has been suggested that the anti-angiogenic mechanism of GC may be related to the enzyme phosphatidylinositol-3-kinase (PI3K), which plays a crucial role in angiogenesis mediated by the alpha 7 nicotinic acetylcholine receptor (α7-nAChR). PI3K is a heterodimeric lipoprotein enzyme composed of regulatory (p85) and catalytic (p110) subunits. Objective: this review examines the evidence of how the GC modulate the PI3K signaling pathway activated by α7-nAChR in the process of in vitro angiogenesis. Methodology: a literature search was conducted using the PubMed and Web of Science search engines, relating the concepts of "endothelial cell," "α7-nAChR," "PI3K," and "glucocorticoid." Results: thirty-two articles were selected that reported on the expression of α7-nAChR and PI3K in human endothelial cells. Furthermore, the effect of dexamethasone on PI3K and Akt (protein kinase B) subunits was documented in human, murine, and porcine models. Based on these findings, a mechanism was proposed whereby GC exert their anti-angiogenic effect through modulation of the expression of the inhibitory p85 subunit of PI3K activated by α7-nAChR in human endothelial cells. Conclusion: background evidence suggests that dexamethasone exerts its anti-angiogenic mechanism of action by increasing the expression of the α7-nAChR-activated PI3K inhibitory subunit p85

7.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844257

RESUMO

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Assuntos
Clorpirifos , Ciclo-Oxigenase 2 , Hexaclorobenzeno , Subunidade alfa do Fator 1 Induzível por Hipóxia , Receptores de Hidrocarboneto Arílico , Neoplasias de Mama Triplo Negativas , Fator A de Crescimento do Endotélio Vascular , Clorpirifos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Hexaclorobenzeno/metabolismo , Hexaclorobenzeno/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Ligantes , Óxido Nítrico Sintase Tipo II/metabolismo , Feminino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
8.
Clinics (Sao Paulo) ; 79: 100407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889502

RESUMO

BACKGROUND: NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment. METHODS: NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 in vivo. RESULTS: Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 in vivo. CONCLUSION: Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Meliteno , Neovascularização Patológica , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Regulação para Cima , Proteínas de Sinalização YAP , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Sinalização YAP/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fosfoproteínas/metabolismo , Angiogênese
9.
Biol Res ; 57(1): 43, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915069

RESUMO

BACKGROUND: Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease occurring in the retina of premature infants and is the main cause of childhood blindness. Nowadays anti-VEGF and retinal photocoagulation are mainstream treatments for ROP, but they develop a variety of complications. Hydrogen (H2) is widely considered as a useful neuroprotective and antioxidative therapeutic method for hypoxic-ischemic disease without toxic effects. However, whether H2 provides physiological angiogenesis promotion, neovascularization suppression and glial protection in the progression of ROP is largely unknown.This study aims to investigate the effects of H2 on retinal angiogenesis, neovascularization and neuroglial dysfunction in the retinas of oxygen-induced retinopathy (OIR) mice. METHODS: In this study, mice that were seven days old and either wild-type (WT) or Nrf2-deficient (Nrf2-/-) were exposed to 75% oxygen for 5 days and then returned to normal air conditions. Different stages of hydrogen gas (H2) inhalation were administered. Vascular obliteration, neovascularization, and blood vessel leakage were analyzed and compared. To count the number of neovascularization endothelial nuclei, routine HE staining of retinal sections was conducted. Immunohistochemistry was performed using DyLight 594 labeled GSL I-isolectin B4 (IB4), as well as primary antibodies against proliferating cell nuclear antigen (PCNA), glial fibrillary acidic protein (GFAP), and Iba-1. Western blots were used to measure the expression of NF-E2-related factor 2 (Nrf2), vascular endothelial growth factor (VEGF), Notch1, Dll4, and HIF-1α. Additionally, the expression of target genes such as NQO1, HO-1, Notch1, Hey1, Hey2, and Dll4 was measured. Human umbilical vein endothelial cells (HUVECs) treated with H2 under hypoxia were used as an in vitro model. RT-PCR was used to evaluate the mRNA expression of Nrf2, Notch/Dll4, and the target genes. The expression of reactive oxygen species (ROS) was observed using immunofluorescence staining. RESULTS: Our results indicate that 3-4% H2 does not disturb retinal physiological angiogenesis, but ameliorates vaso-obliteration and neovascularization in OIR mice. Moreover, H2 prevents the decreased density and reverses the morphologic and functional changes in retinal astrocytes caused by oxygen-induced injury. In addition, H2 inhalation reduces microglial activation, especially in the area of neovascularization in OIR mice. H2 plays a protective role in vascular regeneration by promoting Nrf2 activation and suppressing the Dll4-induced Notch signaling pathway in vivo. Also, H2 promotes the proliferation of HUVECs under hypoxia by negatively regulating the Dll4/Notch pathway and reducing ROS levels through Nrf2 pathway aligning with our findings in vivo.Moreover, the retinal oxygen-sensing mechanisms (HIF-1α/VEGF) are also involved in hydrogen-mediated retinal revascularization and neovascularization suppression. CONCLUSIONS: Collectively, our results indicate that H2 could be a promising therapeutic agent for POR treatment and that its beneficial effect in human ROP might involve the activation of the Nrf2-Notch axis as well as HIF-1α/VEGF pathways.


Assuntos
Modelos Animais de Doenças , Hidrogênio , Neuroglia , Oxigênio , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Hidrogênio/farmacologia , Neovascularização Retiniana/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Camundongos , Retinopatia da Prematuridade/tratamento farmacológico , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Animais Recém-Nascidos , Regeneração/efeitos dos fármacos , Imuno-Histoquímica , Vasos Retinianos/efeitos dos fármacos
10.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904729

RESUMO

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Assuntos
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Transdução de Sinais , Angiotensina I/metabolismo , Neovascularização Patológica/metabolismo , Animais , Fragmentos de Peptídeos/metabolismo
11.
J Clin Med ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792322

RESUMO

Complications from diabetic retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) constitute leading causes of preventable vision loss in working-age patients. Since vascular endothelial growth factor (VEGF) plays a major role in the pathogenesis of these complications, VEGF inhibitors have been the cornerstone of their treatment. Anti-VEGF monotherapy is an effective but burdensome treatment for DME. However, due to the intensive and burdensome treatment, most patients in routine clinical practice are undertreated, and therefore, their outcomes are compromised. Even in adequately treated patients, persistent DME is reported anywhere from 30% to 60% depending on the drug used. PDR is currently treated by anti-VEGF, panretinal photocoagulation (PRP) or a combination of both. Similarly, a number of eyes, despite these treatments, continue to progress to tractional retinal detachment and vitreous hemorrhage. Clearly there are other molecular pathways other than VEGF involved in the pathogenesis of DME and PDR. One of these pathways is the angiopoietin-Tie signaling pathway. Angiopoietin 1 (Ang1) plays a major role in maintaining vascular quiescence and stability. It acts as a molecular brake against vascular destabilization and inflammation that is usually promoted by angiopoietin 2 (Ang2). Several pathological conditions including chronic hyperglycemia lead to Ang2 upregulation. Recent regulatory approval of the bi-specific antibody, faricimab, may improve long term outcomes in DME. It targets both the Ang/Tie and VEGF pathways. The YOSEMITE and RHINE were multicenter, double-masked, randomized non-inferiority phase 3 clinical trials that compared faricimab to aflibercept in eyes with center-involved DME. At 12 months of follow-up, faricimab demonstrated non-inferior vision gains, improved anatomic outcomes and a potential for extended dosing when compared to aflibercept. The 2-year results of the YOSEMITE and RHINE trials demonstrated that the anatomic and functional results obtained at the 1 year follow-up were maintained. Short term outcomes of previously treated and treatment-naive eyes with DME that were treated with faricimab during routine clinical practice suggest a beneficial effect of faricimab over other agents. Targeting of Ang2 has been reported by several other means including VE-PTP inhibitors, integrin binding peptide and surrobodies.

12.
Arch Endocrinol Metab ; 68: e230097, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38739522

RESUMO

Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.


Assuntos
Retinopatia Diabética , MicroRNAs , Neovascularização Patológica , RNA Longo não Codificante , Fator A de Crescimento do Endotélio Vascular , RNA Longo não Codificante/genética , Retinopatia Diabética/genética , Retinopatia Diabética/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Ratos , Humanos , Masculino , Neovascularização Patológica/genética , Ratos Sprague-Dawley , Feminino , Movimento Celular/genética , Proliferação de Células/genética , Pessoa de Meia-Idade , Diabetes Mellitus Experimental
13.
Purinergic Signal ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753131

RESUMO

Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.

14.
Clin Exp Metastasis ; 41(5): 589-597, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38581620

RESUMO

In several cancer types, metastasis is associated with poor prognosis, survival, and quality of life, representing a life risk more significant than the primary tumor itself. Metastasis is a multi-step process that spreads tumor cells from primary sites to surrounding or distant organs, originating secondary tumors. The interconnected steps that drive metastasis depend of several capabilities that enable cells to detach from the primary tumor, acquire motility and migrate through the basal membrane; invade and spread through the vascular system, and finally settle and originate a new tumor. Recently, stress-induced phosphoprotein 1 (STIP1) has emerged as a protein capable of driving tumor cells through these metastasis steps by mediating several biological processes and signaling pathways. This protein is mainly known for its function as a co-chaperone, acting as a scaffold for the interaction of its client heat-shock proteins Hsp70/90 chaperones; however, it is also known that STIP1 can act independently of chaperones to activate downstream phosphorylation pathways. The over-expression of STIP1 has been reported across various cancer types, identifying it as a potential biomarker for predicting patient prognosis and monitoring the progression of metastasis. Here, we present a discussion on how this co-chaperone mediates the initial steps of metastasis (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis), highlighting the biological mechanisms in which STIP1 plays a vital role, also presenting an overview of the current knowledge regarding its clinical relevance.


Assuntos
Proteínas de Choque Térmico , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Proteínas de Choque Térmico/metabolismo , Transdução de Sinais , Animais , Chaperonas Moleculares/metabolismo , Transição Epitelial-Mesenquimal
15.
Biomedicines ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672228

RESUMO

Leukocyte and Platelet-Rich Fibrin (L-PRF) is part of the second generation of platelet-concentrates. L-PRF derived from nonsmokers has been used in surgical procedures, with its beneficial effects in wound healing being proven to stimulate biological activities such as cell proliferation, angiogenesis, and differentiation. Cigarette smoking exerts detrimental effects on tissue healing and is associated with post-surgical complications; however, evidence about the biological effects of L-PRF derived from smokers is limited. This study evaluated the impact of L-PRF secretome (LPRFS) derived from smokers and nonsmokers on angiogenesis and osteoblast differentiation. LPRFS was obtained by submerging L-PRF membranes derived from smokers or nonsmokers in culture media and was used to treat endothelial cells (HUVEC) or SaOs-2 cells. Angiogenesis was evaluated by tubule formation assay, while osteoblast differentiation was observed by alkaline phosphatase and osterix protein levels, as well as in vitro mineralization. LPRFS treatments increased angiogenesis, alkaline phosphatase, and osterix levels. Treatment with 50% of LPRFS derived from smokers and nonsmokers in the presence of osteogenic factors stimulates in vitro mineralization significantly. Nevertheless, differences between LPRFS derived from smokers and nonsmokers were not found. Both LPRFS stimulated angiogenesis and osteoblast differentiation in vitro; however, clinical studies are required to determine the beneficial effect of LPRFS in smokers.

16.
Front Immunol ; 15: 1347530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455038

RESUMO

Cytokines are proteins that act in the immune response and inflammation and have been associated with the development of some types of cancer, such as gastric cancer (GC). GC is a malignant neoplasm that ranks fifth in incidence and third in cancer-related mortality worldwide, making it a major public health issue. Recent studies have focused on the role these cytokines may play in GC associated with angiogenesis, metastasis, and chemoresistance, which are key factors that can affect carcinogenesis and tumor progression, quality, and patient survival. These inflammatory mediators can be regulated by epigenetic modifications such as DNA methylation, histone protein modification, and non-coding RNA, which results in the silencing or overexpression of key genes in GC, presenting different targets of action, either direct or mediated by modifications in key genes of cytokine-related signaling pathways. This review seeks insight into the relationship between cytokine-associated epigenetic regulation and its potential effects on the different stages of development and chemoresistance in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Epigênese Genética , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Angiogênese
17.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474340

RESUMO

The enzyme heme oxygenase-1 (HO-1) is pivotal in reproductive processes, particularly in placental and vascular development. This study investigated the role of HO-1 and its byproduct, carbon monoxide (CO), in trophoblastic spheroid implantation. In order to deepen our understanding of the role of HO-1 during implantation, we conducted in vivo experiments on virgin and pregnant mice, aiming to unravel the cellular and molecular mechanisms. Using siRNA, HO-1 was knocked down in JEG-3 and BeWo cells and trophoblastic spheroids were generated with or without CO treatment. Adhesion assays were performed after transferring the spheroids to RL-95 endometrial epithelial cell layers. Additionally, angiogenesis, stress, and toxicity RT2-Profiler™ PCR SuperArray and PCR analyses were performed in uterine murine samples. HO-1 knockdown by siRNA impeded implantation in the 3D culture model, but this effect could be reversed by CO. Uteruses from virgin Hmox1-/- females exhibited altered expression of angiogenesis and stress markers. Furthermore, there was a distinct expression pattern of cytokines and chemokines in uteruses from gestation day 14 in Hmox1-/- females compared to Hmox1+/+ females. This study strongly supports the essential role of HO-1 during implantation. Moreover, CO appears to have the potential to compensate for the lack of HO-1 during the spheroid attachment process. The absence of HO-1 results in dysregulation of angiogenesis and stress-related genes in the uterus, possibly contributing to implantation failure.


Assuntos
Heme Oxigenase-1 , Placenta , Gravidez , Feminino , Camundongos , Animais , Heme Oxigenase-1/metabolismo , Placenta/metabolismo , Linhagem Celular Tumoral , Angiogênese , Útero/metabolismo , RNA Interferente Pequeno/metabolismo , Expressão Gênica
18.
J Mol Histol ; 55(3): 253-264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551737

RESUMO

Prostate cancer (PCa) is the second cause of cancer death among men worldwide. Several processes are involved in the development and progression of PCa such as angiogenesis, inflammation and oxidative stress. The present study investigated the effect of short- or long-term Tempol treatment at different stages of prostate adenocarcinoma progression, focusing on angiogenic, proliferative, and stromal remodeling processes in TRAMP mice. The dorsolateral lobe of the prostate of TRAMP mice were evaluated at two different stages of PCa progression; early and late stages. Early stage was again divided into, short- or long-term. 50 mg/kg Tempol dose was administered orally. The results demonstrated that Tempol mitigated the prostate histopathological lesion progressions in the TRAMP mice in all treated groups. However, Tempol increased molecules involved in the angiogenic process such as CD31 and VEGFR2 relative frequencies, particularly in long-term treatment. In addition, Tempol upregulated molecule levels involved in angiogenesis and stromal remodeling process VEGF, TGF-ß1, VE-cadherin and vimentin, particularly, in T8-16 group. Thus, it was concluded that Tempol treatment delayed prostatic lesion progression in the dorsolateral lobe of the TRAMP mice. However, Tempol also led to pro-angiogenic effects and glandular stromal microenvironment imbalance, especially, in the long-term treatment.


Assuntos
Óxidos N-Cíclicos , Neovascularização Patológica , Neoplasias da Próstata , Marcadores de Spin , Masculino , Animais , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/uso terapêutico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Camundongos , Progressão da Doença , Angiogênese
19.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535794

RESUMO

Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.


Assuntos
Angiogênese , Desintegrinas , Animais , Inibidores da Angiogênese , Venenos de Serpentes , Integrinas
20.
Cir Cir ; 92(1): 10-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537244

RESUMO

OBJECTIVE: The aim of the study is to show for the first time how aflibercept affects endometriosis lesions. MATERIAL AND METHODS: Surgically induced endometriosis in Wistar albino female rats. Rats with endometriosis were randomly divided into three groups: control (Co), aflibercept (Af), and leuprolide acetate (Le). Then, Af, aflibercept, and Le received leuprolide acetate. The control group was not treated. The weights and changes in intra-abdominal adhesions of the rats before and after treatment were recorded according to the Blauer adhesion score. Blood extracted for sacrifice was analyzed. Endometriotic lesions were evaluated for size, volume, histology, and immunohistochemistry (vascular endothelial growth factor [VEGF] and CD31). Significance level was accepted as p < 0.05. RESULTS: Aflibercept significantly reduced endometrial implant volume (p = 0.002). The explant epithelial histological score showed a significant difference between aflibercept and leuprolide acetate (p = 0.006) and between aflibercept and control groups (p = 0.002). Aflibercept decreased VEGF-H and CD31 expression (p = 0.001) more than leuprolide acetate. Aflibercept improved adhesions (p = 0.006). CONCLUSION: Aflibercept is more successful than leuprolide acetate in the treatment of endometriosis.


OBJETIVO: Mostrar por primera vez cómo afecta aflibercept a las lesiones de endometriosis. MATERIAL Y MÉTODOS: Endometriosis inducida quirúrgicamente en ratas hembras albinas Wistar. Las ratas con endometriosis se dividieron aleatoriamente en tres grupos: control (Co), aflibercept (Af) y acetato de leuprolida (Le). Luego, Af, aflibercept y Le recibieron acetato de leuprolida. El grupo de control no fue tratado. Los pesos y cambios en las adherencias intraabdominales de las ratas antes y después del tratamiento se registraron de acuerdo con la puntuación de adherencia de Blauer. La sangre extraída para el sacrificio fue analizada. Las lesiones endometriósicas se evaluaron en tamaño, volumen, histología e inmunohistoquímica (factor de crecimiento endotelial vascular [VEGF] y CD31). El nivel de significación se aceptó como p < 0.05. RESULTADOS: Aflibercept redujo significativamente el volumen del implante endometrial (p = 0.002). La puntuación histológica epitelial (EHS) del explante mostró una diferencia significativa entre aflibercept y acetato de leuprolida (p = 0.006) y entre los grupos de aflibercept y control (p = 0.002). Aflibercept disminuyó la expresión de VEGF-H y CD31 (p = 0.001) más que el acetato de leuprolida. Aflibercept mejoró las adherencias (p = 0.006). CONCLUSIÓN: Aflibercept tiene más éxito que el acetato de leuprolide en el tratamiento de la endometriosis.


Assuntos
Endometriose , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Feminino , Humanos , Ratos , Animais , Endometriose/complicações , Endometriose/tratamento farmacológico , Leuprolida/farmacologia , Leuprolida/uso terapêutico , Ratos Wistar , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA