RESUMO
Despite the spectacular success of cutting-edge protein fold prediction methods, many critical questions remain unanswered, including why proteins can reach their native state in a biologically reasonable time. A satisfactory answer to this simple question could shed light on the slowest folding rate of proteins as well as how mutations-amino-acid substitutions and/or post-translational modifications-might affect it. Preliminary results indicate that (i) Anfinsen's dogma validity ensures that proteins reach their native state on a reasonable timescale regardless of their sequence or length, and (ii) it is feasible to determine the evolution of protein folding rates without accounting for epistasis effects or the mutational trajectories between the starting and target sequences. These results have direct implications for evolutionary biology because they lay the groundwork for a better understanding of why, and to what extent, mutations-a crucial element of evolution and a factor influencing it-affect protein evolvability. Furthermore, they may spur significant progress in our efforts to solve crucial structural biology problems, such as how a sequence encodes its folding.
RESUMO
One of the main concerns of Anfinsen was to reveal the connection between the amino-acid sequence and their biologically active conformation. This search gave rise to two crucial questions in structural biology, namely, why the proteins fold and how a sequence encodes its folding. As to the why, he proposes a plausible answer, namely, the thermodynamic hypothesis. As to the how, this remains an unsolved challenge. Consequently, the protein folding problem is examined here from a new perspective, namely, as an 'analytic whole'. Conceiving the protein folding in this way enabled us to (i) examine in detail why the force-field-based approaches have failed, among other purposes, in their ability to predict the three-dimensional structure of a protein accurately; (ii) propose how to redefine them to prevent these shortcomings, and (iii) conjecture on the origin of the state-of-the-art numerical-methods success to predict the tridimensional structure of proteins accurately.
Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Conformação Molecular , Sequência de Aminoácidos , Termodinâmica , Conformação ProteicaRESUMO
An accurate estimation of the Protein Space size, in light of the factors that govern it, is a long-standing problem and of paramount importance in evolutionary biology, since it determines the nature of protein evolvability. A simple analysis will enable us to, firstly, reduce an unrealistic Protein Space size of ~ 10130 sequences, for a 100-residues polypeptide chain, to ~ 109 functional proteins and, secondly, estimate a robust average-mutation rate per amino acid (ξ ~ 1.23) and infer from it, in light of the protein marginal stability, that only a fraction of the sequence will be available at any one time for a functional protein to evolve. Although this result does not solve the Protein Space vastness problem frames it in a more rational one and illustrates the impact of the marginal stability on protein evolvability.
Assuntos
Evolução Molecular , Mutação , Proteínas/química , Proteínas/genética , Estabilidade ProteicaRESUMO
This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.