Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(1): 1546-1558, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34351579

RESUMO

Ecotoxicological assessment of landfill leachate has become a priority to determine its impacts on the ecosystem. Toxicity assays with microorganisms stand out due to their quick response, low cost and ease of testing. In this context, the present study evaluated the acute toxic effects of leachates from two landfills of different ages and modes of operation to bacterium Aliivibrio fischeri and activated sludge microorganisms and the ammonia nitrogen and humic substances (HS) sensitivity to these organisms. Reductions greater than 30% in leachate toxicity were observed after ammonia removal for A. fischeri and activated sludge microorganisms. After 97% removal of HS, the greater reductions in toxicity (44.28 to 79.82%) were verified for microbial species studied, indicating that the organic compounds (measured as chemical oxygen demand, total organic carbon and humic substances) were the primary pollutants responsible for the toxicity of the leachates. Concerning the organisms studied, A. fischeri showed greater sensitivity to the leachates' pollutants compared to the activated sludge microorganisms. Nevertheless, a strong correlation was observed between A. fischeri and activated sludge microorganisms' toxicity responses, suggesting that respirometry assay can be used to determine leachate toxicity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Aliivibrio fischeri , Ecossistema , Esgotos , Testes de Toxicidade , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Waste Manag ; 101: 259-267, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634812

RESUMO

Over the past few years, supercritical water oxidation (ScWO) has shown great potential for application to landfill leachate treatment, providing substantial organic matter degradation in terms of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC). However, the conversion of ammonia, which is present at high concentrations in leachates, is the rate-limiting step during ScWO and usually requires large amounts of oxidants, the addition of catalysts, or severe operating conditions. Aiming at proposing a treatment system that effectively removes both organic matter and ammonia from leachate, this paper evaluates the intensification of the ScWO process through ion exchange with zeolite. Thus, ScWO was operated under a pressure of 23 MPa at 600 and 700 °C, without the addition of oxidants. The zeolite (clinoptilolite) was used without any modification inside a glass column. The ScWO (600 °C)/zeolite system removed 90% ammoniacal nitrogen (NH3-N), 100% nitrite (NO2-N), 98% nitrate (NO3-N), color, and turbidity, 81% TOC, and 74% COD, suggesting that this system is a promising alternative for leachate treatment. However, the final NH3-N and COD values were slightly above the limits (20 and 200 mg L-1, respectively) stipulated by the Brazilian environmental legislation. These results suggest that further improvements are still required for the application of the intensified ScWO to be feasible. Notably, ammonium-saturated clinoptilolite is amenable for regeneration or can be applied to soil as a slow-release fertilizer.


Assuntos
Poluentes Químicos da Água , Zeolitas , Brasil , Troca Iônica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA