RESUMO
BACKGROUND: A number of dysregulated miRNAs have been identified and are proposed to have significant roles in the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflammatory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-). RESULTS: Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways. CONCLUSIONS: These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role of AOE-regulated miRNAs in diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Extratos Vegetais/farmacologia , Albuminúria , Alpinia , Animais , Glicemia/análise , Creatinina/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: A number of dysregulated miRNAs have been identified and are proposed to have significant roles in the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflammatory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-). RESULTS: Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways. CONCLUSIONS: These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role of AOE-regulated miRNAs in diabetes mellitus.