Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Environ Int ; 190: 108907, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39121825

RESUMO

Environmental exposures and gene-exposure interactions are the major causes of some diseases. Early-life exposome studies are needed to elucidate the role of environmental exposures and their complex interactions with biological mechanisms involved in childhood health. This study aimed to determine the contribution of early-life exposome to DNA damage and the modifying effect of genetic polymorphisms involved in air pollutants metabolism, antioxidant defense, and DNA repair. We conducted a cohort study in 416 Colombian children under five years. Blood samples at baseline were collected to measure DNA damage by the Comet assay and to determine GSTT1, GSTM1, CYP1A1, H2AX, OGG1, and SOD2 genetic polymorphisms. The exposome was estimated using geographic information systems, remote sensing, LUR models, and questionnaires. The association exposome-DNA damage was estimated using the Elastic Net linear regression with log link. Our results suggest that exposure to PM2.5 one year before the blood draw (BBD) (0.83, 95 %CI: 0.76; 0.91), soft drinks consumption (0.94, 0.89; 0.98), and GSTM1 null genotype (0.05, 0.01; 0.36) diminished the DNA damage, whereas exposure to PM2.5 one-week BBD (1.18, 1.06; 1.32), NO2 lag-5 days BBD (1.27, 1.18; 1.36), in-house cockroaches (1.10, 1.00; 1.21) at the recruitment, crowding at home (1.34, 1.08; 1.67) at the recruitment, cereal consumption (1.11, 1.04; 1.19) and H2AX (AG/GG vs. AA) (1.44, 1.11; 1.88) increased the DNA damage. The interactions between H2AX (AG/GG vs. AA) genotypes with crowding and PM2.5 one week BBD, GSTM1 (null vs. present) with humidity at the first year of life, and OGG1 (SC/CC vs. SS) with walkability at the first year of life were significant. The early-life exposome contributes to elucidating the effect of environmental exposures on DNA damage in Colombian children under five years old. The exposome-DNA damage effect appears to be modulated by genetic variants in DNA repair and antioxidant defense enzymes.


Assuntos
Poluentes Atmosféricos , Dano ao DNA , Exposição Ambiental , Interação Gene-Ambiente , Humanos , Pré-Escolar , Colômbia , Masculino , Feminino , Lactente , Expossoma , Estudos de Coortes , Glutationa Transferase/genética , Material Particulado , Polimorfismo Genético , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos
2.
Sci Total Environ ; 951: 175541, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151628

RESUMO

The increase in the frequency and severity of global wildfires has been largely influenced by climate change and land use changes. From February 2 to 6, 2024, central Chile experienced its most devastating wildland-urban interface wildfire in history, severely impacting the Valparaíso region. This catastrophic event, which led to extensive forest destruction, the loss of thousands of homes, and over a hundred human fatalities, directly impacted the area surrounding the campus of Federico Santa María Technical University. In that period, an air quality monitoring campaign was set up on the campus to measure black carbon (BC) and particulate matter (PM) during the wildfire season. The monitoring station was located directly within the smoke plume, allowing for the collection of unprecedented air quality data. Extremely high concentrations of BC at 880 nm were reported during the wildfires, with a daily mean (±σ) of 14.83 ± 19.52 µg m-3. Peak concentrations measured at 880 nm and 375 nm reached 812.89 µg m-3 and 1561.24 µg m-3, respectively. The maximum daily mean BC concentrations at these wavelengths were 55 and 99 times higher, respectively, compared to the pre-event period. The mean Ångström absorbing coefficient during the event was 1.66, indicating biomass burning as the primary BC source, while the maximum BC/PM2.5 ratio (at 375 nm) reached 57 %. From February 2 to 5, 2024, PM concentrations exceeded the Chilean air quality standard by 82 % and 198 % for coarse and fine particles, respectively. These levels are 4.7 and 6.0 times higher than the World Health Organization's recommendations. These elevated concentrations persisted for up to three days after the fire was extinguished. This study provides unique evidence of the rapid deterioration of regional air quality during a wildfire event using in situ measurements, serving as a stark reminder of the far-reaching consequences of a warming climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Fuligem , Incêndios Florestais , Material Particulado/análise , Chile , Poluentes Atmosféricos/análise , Fuligem/análise , Poluição do Ar/estatística & dados numéricos , Mudança Climática
4.
Front Public Health ; 12: 1390780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962783

RESUMO

Introduction: Globally, air pollution is the leading environmental cause of disease and premature death. Raising awareness through environmental education and adequate communication on air quality could reduce the adverse effects. We aimed to assess the knowledge, attitudes, and practices (KAP) regarding air pollution and health and determine the factors associated with these KAP in children and adolescents. Methods: In 2019-2020, a cross-sectional study was conducted on 6th-11th grade high school students in five municipalities in Colombia. Variables collected included: age, sex, private or public school, any medical history, emergency room visits due to respiratory symptoms in the last year, and whether students played sports. The main exposure was the School Environmental Project. The outcomes were the KAP scale [0% (the lowest score) to 100% (the highest score)]. The factors associated with KAP levels were evaluated with independent mixed regressions due to the multilevel structure of the study (level 1: student; level 2: school), and the exponential coefficients (95% confidence interval-CI) were reported. Results: Among 1,676 students included, 53.8% were females. The median knowledge score about air pollution and its health effects was 33.8% (IQR: 24.0-44.9), 38.6% knew the air quality index, 30.9% knew the air quality alerts that occurred twice a year in these municipalities and 5.3% had high self-perceived knowledge. Positive attitudes, pro-environmental practices, being female, grade level, attending a private school, having respiratory diseases, and the school environmental project importance were associated with higher knowledge scores. The median attitudes score was 78.6% (IQR: 71.4-92.9). Pro-environmental attitudes were associated with knowledge-increasing, being female, attending a private school, and the school environmental project. The median pro-environmental practices score was 28.6% (IQR: 28.6-42.9). During air quality alerts, 11.6% had worn masks, 19% had reduced the opening time of windows and 15.9% avoided leaving home. Pro-environmental practices were associated with knowledge-increasing and attitudes-increasing, and lower practices with higher grade levels, visiting a doctor in the last year, and practicing sports. Discussion: Children and adolescents have low knowledge scores and inadequate pro-environmental practices scores regarding air pollution. However, they demonstrate positive attitudes towards alternative solutions and express important concerns about the planet's future.


Assuntos
Poluição do Ar , Conhecimentos, Atitudes e Prática em Saúde , Estudantes , Humanos , Colômbia , Estudos Transversais , Feminino , Masculino , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Adolescente , Poluição do Ar/efeitos adversos , Criança , Instituições Acadêmicas , Inquéritos e Questionários
5.
Heliyon ; 10(11): e31857, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882336

RESUMO

Quantify the impact of meteorological changes on air pollution levels is the aim of numerous recent studies. However, there is still a lack of investigations assessing the influence of land use/activities on the relationship between climate and air quality. In this study, we used a two-stage design to estimate the influence of land use types and activities on the association between weather changes and air pollution (PM2.5, NO2, SO2, O3) over 5572 municipalities in Brazil. To calculate the influence of recent weather change on air pollution concentration for each municipality, we used the "weather penalty" concept. This approach considers differences in linear trend coefficients between two generalized additive models. Then, using quantile regression, we estimated the effect of land use types and activities (8 variables related to transportation, energy generation, and land use) on weather-related increases in ambient air pollution. We found that an increase in PM2.5 was associated to recent weather changes in most municipalities (average increase of 0.07µg/m3per year) and a decrease in NO2 in most municipalities (average decrease of 0.0003 ppb per year). O3 and SO2 had more intense increases associated with weather changes in the North region. Our findings suggest the most robust positive associations between weather penalties on PM2.5 and areas with non-clean energy and oil refineries (average increase of 0.006µg/m3per year and 0.04µg/m3per year, respectively). We also found positive associations between Pasture areas, urban areas, and transportation and the weather penalties of this pollutant. In contrast, forest areas were negatively associated with PM2.5 penalties. We also found that oil refineries, urban areas, and transportation significantly positively influenced weather penalties for SO2 and O3. Overall, the study highlights the importance of considering the influence of land use types and activities on weather-related changes in ambient air pollution.

6.
Sci Total Environ ; 946: 174197, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914336

RESUMO

The 2022 wildfires in New Mexico, United States, were unparalleled compared to past wildfires in the state in both their scale and intensity, resulting in poor air quality and a catastrophic loss of habitat and livelihood. Among all wildfires in New Mexico in 2022, six wildfires were selected for our study based on the size of the burn area and their proximity to populated areas. These fires accounted for approximately 90 % of the total burn area in New Mexico in 2022. We used a regional chemical transport model and data-fusion technique to quantify the contribution of these six wildfires (April 6 to August 22) on particulate matter (PM2.5: diameter ≤ 2.5 µm) and ozone (O3) concentrations, as well as the associated health impacts from short-term exposure. We estimated that these six wildfires emitted 152 thousand tons of PM2.5 and 287 thousand tons of volatile organic compounds to the atmosphere. We estimated that the average daily wildfire smoke PM2.5 across New Mexico was 0.3 µg/m3, though 1 h maximum exceeded 120 µg/m3 near Santa Fe. Average wildfire smoke maximum daily average 8-h O3 (MDA8-O3) contribution was 0.2 ppb during the study period over New Mexico. However, over the state 1 h maximum smoke O3 exceeded 60 ppb in some locations near Santa Fe. Estimated all-cause excess mortality attributable to short term exposure to wildfire PM2.5 and MDA8-O3 from these six wildfires were 18 (95 % Confidence Interval (CI), 15-21) and 4 (95 % CI: 3-6) deaths. Additionally, we estimate that wildfire PM2.5 was responsible for 171 (95 %: 124-217) excess cases of asthma emergency department visits. Our findings underscore the impact of wildfires on air quality and human health risks, which are anticipated to intensify with global warming, even as local anthropogenic emissions decline.


Assuntos
Poluição do Ar , Incêndios Florestais , Poluição do Ar/estatística & dados numéricos , New Mexico , Nível de Saúde , Incêndios Florestais/estatística & dados numéricos , Material Particulado/análise , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Modelos Estatísticos , Humanos , Mortalidade Prematura
7.
Artigo em Inglês | MEDLINE | ID: mdl-38928922

RESUMO

The Brazilian Amazon, a vital tropical region, faces escalating threats from human activities, agriculture, and climate change. This study aims to assess the relationship between forest fire occurrences, meteorological factors, and hospitalizations due to respiratory diseases in the Legal Amazon region from 2009 to 2019. Employing simultaneous equation models with official data, we examined the association between deforestation-induced fires and respiratory health issues. Over the studied period, the Legal Amazon region recorded a staggering 1,438,322 wildfires, with 1,218,606 (85%) occurring during August-December, known as the forest fire season. During the forest fire season, a substantial portion (566,707) of the total 1,532,228 hospital admissions for respiratory diseases were recorded in individuals aged 0-14 years and 60 years and above. A model consisting of two sets of simultaneous equations was constructed. This model illustrates the seasonal fluctuations in meteorological conditions driving human activities associated with increased forest fires. It also represents how air quality variations impact the occurrence of respiratory diseases during forest fires. This modeling approach unveiled that drier conditions, elevated temperatures, and reduced precipitation exacerbate fire incidents, impacting hospital admissions for respiratory diseases at a rate as high as 22 hospital admissions per 1000 forest fire events during the forest fire season in the Legal Amazon, 2009-2019. This research highlights the urgent need for environmental and health policies to mitigate the effects of Amazon rainforest wildfires, stressing the interplay of deforestation, climate change, and human-induced fires on respiratory health.


Assuntos
Florestas , Doenças Respiratórias , Estações do Ano , Incêndios Florestais , Humanos , Brasil/epidemiologia , Adolescente , Lactente , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia , Pré-Escolar , Recém-Nascido , Criança , Hospitalização/estatística & dados numéricos , Pessoa de Meia-Idade , Mudança Climática , Incêndios , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-38929035

RESUMO

Background: Air pollution has emerged as a global public health concern. Specifically, in Medellín, Colombia, episodes of elevated air pollution have been documented. Medical students' knowledge of air pollution is paramount for implementing future interventions directed toward patients. The aim of this research was to delineate the knowledge, attitudes, and practices regarding air pollution among medical students at a private university in Medellín. Methods: A cross-sectional study involving 352 medical students was conducted. A questionnaire was administered, generating scores ranging from 0 to 100, where a higher score signified better knowledge, attitudes, and practices. Data were analyzed using frequencies, summary measures, non-parametric tests, and linear regression. Results: In total, 31% rated the education received at the university on the relationship between health and air quality as fair to poor, and 81% perceived the air quality in the city as poor. The knowledge score was 77.8 (IQR 71.1-85.6), with 90% acknowledging that exposure to air pollution increases the risk of various diseases. The attitudes score was 82.1 (IQR 71.8-87.2), and 25.9% believed that air pollution is a multifactorial problem, rendering their actions ineffective. In terms of practices, the score was 50 (IQR 42.9-57.1), indicating that students either did not employ protective measures against pollution or used inappropriate practices such as masks or air purifiers. Regression analysis revealed no association between knowledge and practices. Conclusion: The findings of this study underscore that medical students possess commendable knowledge regarding the health effects of air pollution. However, their adoption of inappropriate practices for self-protection is evident. The lack of correlation between knowledge and practices highlights the necessity of educational initiatives to be complemented by regulatory and cultural interventions.


Assuntos
Poluição do Ar , Conhecimentos, Atitudes e Prática em Saúde , Estudantes de Medicina , Humanos , Estudantes de Medicina/psicologia , Estudantes de Medicina/estatística & dados numéricos , Feminino , Masculino , Estudos Transversais , Colômbia , Inquéritos e Questionários , Adulto Jovem , Adulto
9.
Animals (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929340

RESUMO

A deeper understanding of gas emissions in milk production is crucial for promoting productive efficiency, sustainable resource use, and animal welfare. This paper aims to analyze ammonia and greenhouse gas emissions in dairy farming using bibliometric methods. A total of 187 English-language articles with experimental data from the Scopus and Web of Science databases (January 1987 to April 2024) were reviewed. Publications notably increased from 1997, with the highest number of papers published in 2022. Research mainly focuses on ammonia and methane emissions, including quantification, volatilization, and mitigation strategies. Other gases like carbon dioxide, nitrous oxide, and hydrogen sulfide were also studied. Key institutions include the University of California-Davis and Aarhus University. Bibliometric analysis revealed research evolution, identifying trends, gaps, and future research opportunities. This bibliometric analysis offers insights into emissions, air quality, sustainability, and animal welfare in dairy farming, highlighting areas for innovative mitigation strategies to enhance production sustainability. This research contributes to academia, enhancing agricultural practices, and informing environmental policies. It is possible to conclude that this research is a valuable tool for understanding the evolution of research on gas emissions in dairy cattle facilities, providing guidance for future studies and interventions to promote more sustainable production.

10.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930485

RESUMO

Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention.

11.
Front Immunol ; 15: 1401800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933275

RESUMO

Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.


Assuntos
Poluição do Ar , Doença de Alzheimer , Inflamação , Leptina , Obesidade , Material Particulado , Animais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Inflamação/metabolismo , Inflamação/etiologia , Leptina/metabolismo , Obesidade/metabolismo , Obesidade/etiologia , Material Particulado/efeitos adversos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
12.
Front Big Data ; 7: 1412837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873282

RESUMO

Introduction: Air quality is directly affected by pollutant emission from vehicles, especially in large cities and metropolitan areas or when there is no compliance check for vehicle emission standards. Particulate Matter (PM) is one of the pollutants emitted from fuel burning in internal combustion engines and remains suspended in the atmosphere, causing respiratory and cardiovascular health problems to the population. In this study, we analyzed the interaction between vehicular emissions, meteorological variables, and particulate matter concentrations in the lower atmosphere, presenting methods for predicting and forecasting PM2.5. Methods: Meteorological and vehicle flow data from the city of Curitiba, Brazil, and particulate matter concentration data from optical sensors installed in the city between 2020 and 2022 were organized in hourly and daily averages. Prediction and forecasting were based on two machine learning models: Random Forest (RF) and Long Short-Term Memory (LSTM) neural network. The baseline model for prediction was chosen as the Multiple Linear Regression (MLR) model, and for forecast, we used the naive estimation as baseline. Results: RF showed that on hourly and daily prediction scales, the planetary boundary layer height was the most important variable, followed by wind gust and wind velocity in hourly or daily cases, respectively. The highest PM prediction accuracy (99.37%) was found using the RF model on a daily scale. For forecasting, the highest accuracy was 99.71% using the LSTM model for 1-h forecast horizon with 5 h of previous data used as input variables. Discussion: The RF and LSTM models were able to improve prediction and forecasting compared with MLR and Naive, respectively. The LSTM was trained with data corresponding to the period of the COVID-19 pandemic (2020 and 2021) and was able to forecast the concentration of PM2.5 in 2022, in which the data show that there was greater circulation of vehicles and higher peaks in the concentration of PM2.5. Our results can help the physical understanding of factors influencing pollutant dispersion from vehicle emissions at the lower atmosphere in urban environment. This study supports the formulation of new government policies to mitigate the impact of vehicle emissions in large cities.

13.
Front Allergy ; 5: 1387525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863567

RESUMO

Rhinitis arises from either allergic or non-allergic inflammation of the nasal mucosa, characterized by the infiltration of inflammatory cells into the tissue and nasal secretions, along with structural alterations in the nasal mucosa. The pathways through which air pollution affects rhinitis may diverge from those affecting asthma. This article aims to review the effects of diverse air pollutants on the nose, the correlation of climate change and pollution, and how they aggravate the symptoms of patients with rhinitis.

14.
J Environ Manage ; 362: 121352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833930

RESUMO

The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.


Assuntos
Filtração , Nanopartículas , Poliestirenos , Poliestirenos/química , Nanopartículas/química , Filtração/métodos , Membranas Artificiais , Polímeros/química , Reciclagem , Permeabilidade
15.
Heliyon ; 10(11): e31613, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845902

RESUMO

In this study, the relative contributions of main emission sources to the typical ambient concentrations of key pollutants, such as sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10 and PM2.5) in Guayaquil, Ecuador, were investigated. A previous urban emissions inventory for mobile sources was expanded to include other transportation means and main industrial activities using the EMEP/EEA methodology to achieve this objective. The WRF/CALMET/CALPUFF modeling system was used to simulate the annual spatiotemporal distribution of air pollution in the city. According to the model, NO2 concentrations exceed the yearly value and 1-h Ecuadorian standards (40 and 200 µg/m3) in 1 % and 6 % of the cells of the modeling domain, respectively. These hotspots related to local sources were located in the northwest center of the city. The contributions of the manufacturing sector, thermal power plants, ports, airports, and road traffic were assessed individually, and the results indicated that air quality in the study area was strongly dominated by road traffic. The contributions of NO2, CO, PM10, and PM2.5 at the city level reached 76 %, 96 %, 90 %, and 92 % of the annual mean, respectively. In the case of SO2, the manufacturing sector made the most significant contribution (75 %), followed by thermal power plants (16 %). Furthermore, an analysis at 14 specific locations across Guayaquil identified spatial variations that may support the design and development of an air quality monitoring network for the city.

16.
Sci Rep ; 14(1): 14186, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902344

RESUMO

Morbidity and mortality from several diseases are increased on days of higher ambient air pollution. We carried out a daily time-series analysis with distributive lags to study the influence of short-term air pollution exposure on COVID-19 related hospitalization in Santiago, Chile between March 16 and August 31, 2020. Analyses were adjusted for temporal trends, ambient temperature, and relative humidity, and stratified by age and sex. 26,579 COVID-19 hospitalizations were recorded of which 24,501 were laboratory confirmed. The cumulative percent change in hospitalizations (95% confidence intervals) for an interquartile range increase in air pollutants were: 1.1 (0.2, 2.0) for carbon monoxide (CO), 0.30 (0.0, 0.50) for nitrogen dioxide (NO2), and 2.7 (1.9, 3.0) for particulate matter of diameter ≤ 2.5 microns (PM2.5). Associations with ozone (O3), particulate matter of diameter ≤ 10 microns (PM10) and sulfur dioxide (SO2) were not significant. The observed effect of PM2.5 was significantly greater for females and for those individuals ≥ 65 years old. This study provides evidence that daily increases in air pollution, especially PM2.5, result in a higher observed risk of hospitalization from COVID-19. Females and the elderly may be disproportionately affected.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Hospitalização , Material Particulado , Humanos , COVID-19/epidemiologia , Chile/epidemiologia , Hospitalização/estatística & dados numéricos , Feminino , Masculino , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Idoso , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Adulto , Monóxido de Carbono/análise , SARS-CoV-2/isolamento & purificação , Dióxido de Nitrogênio/análise , Ozônio/análise , Dióxido de Enxofre/análise , Adulto Jovem
17.
Sci Rep ; 14(1): 11464, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769093

RESUMO

Long-term exposure to ambient air pollution raises the risk of deaths and morbidity worldwide. From 1990 to 2019, we observed the epidemiological trends and age-period-cohort effects on the cardiovascular diseases (CVD) burden attributable to ambient air pollution across Brazil, Russia, India, China, and South Africa (BRICS). The number of CVD deaths related to ambient particulate matter (PM) pollution increased nearly fivefold in China [5.0% (95% CI 4.7, 5.2)] and India [5.7% (95% CI 5.1, 6.3)] during the study period. The age-standardized CVD deaths and disability-adjusted life years (DALYs) due to ambient PM pollution significantly increased in India and China but decreased in Brazil and Russia. Due to air pollution, the relative risk (RR) of premature CVD mortality (< 70 years) was higher in Russia [RR 12.6 (95% CI 8.7, 17.30)] and India [RR 9.2 (95% CI 7.6, 11.20)]. A higher period risk (2015-2019) for CVD deaths was found in India [RR 1.4 (95% CI 1.4, 1.4)] followed by South Africa [RR 1.3 (95% CI 1.3, 1.3)]. Across the BRICS countries, the RR of CVD mortality markedly decreased from the old birth cohort to young birth cohorts. In conclusion, China and India showed an increasing trend of CVD mortality and morbidity due to ambient PM pollution and higher risk of premature CVD deaths were observed in Russia and India.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Material Particulado , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/etiologia , Poluição do Ar/efeitos adversos , África do Sul/epidemiologia , China/epidemiologia , Federação Russa/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Feminino , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Idoso , Brasil/epidemiologia , Adulto , Exposição Ambiental/efeitos adversos , Anos de Vida Ajustados por Deficiência , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes
18.
J Inflamm (Lond) ; 21(1): 15, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698414

RESUMO

INTRODUCTION: PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE: To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS: PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1ß; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1ß and IL-18, within lung tissue. CONCLUSION: Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1ß. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.

19.
Environ Pollut ; 355: 124089, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729508

RESUMO

Glacial bodies in the Peruvian Andes Mountains store and supply freshwater to hundreds of thousands of people in central Peru. Atmospheric black carbon (BC) is known to accelerate melting of snow and ice, in addition to contributing to air pollution and the health of people. Currently there is limited understanding on the sources and temporal variability of BC in valley and mountain environments in Peru. To address this problem, this study combined surface observations of BC collected during 2022-2023 with WRF model simulations and HYSPLIT trajectories to analyze the dispersion and sources of BC in valley and high elevation environments and the associated local atmospheric circulations. Results show high BC concentrations are associated with the valley-mountain wind system that occurs on both sides of the Huaytapallana mountain range. A pronounced circulation occurs on the western slopes of Huaytapallana when concentrations of BC increase during daylight hours, which transports atmospheric pollutants from cities in the Mantaro River Valley to the Huaytapallana mountain range. Low concentrations of BC are associated with circulations from the east that are channeled by the pronounced ravines of the Andes-Amazon transition. On average, during the season of highest BC concentrations (July-November), the relative contributions of fossil fuels are dominant to biomass burning at the valley observatory and are slightly lower at the Huaytapallana observatory. These results demonstrate the need to promote mitigation actions to reduce emissions of BC and air pollution associated with forest fires and local anthropogenic activity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Atmosfera , Monitoramento Ambiental , Fuligem , Peru , Poluentes Atmosféricos/análise , Fuligem/análise , Atmosfera/química , Poluição do Ar/estatística & dados numéricos
20.
J Hazard Mater ; 473: 134606, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788590

RESUMO

Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) µg/m3. For every 10-µg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Neoplasias , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Brasil/epidemiologia , Neoplasias/mortalidade , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Masculino , Feminino , Estudos Cross-Over , Pessoa de Meia-Idade , Idoso , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA