Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 11: 102419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885760

RESUMO

Currently, Brazil is one of the world's largest grain producers and exporters. Agriculture has already entered its 4.0 version (2017), also known as digital agriculture, when the industry has entered the 4.0 era (2011). This new paradigm uses Internet of Things (IoT) techniques, sensors installed in the field, network of interconnected sensors in the plot, drones for crop monitoring, multispectral cameras, storage and processing of data in Cloud Computing, and Big Data techniques to process the large volumes of generated data. One of the practical options for implementing precision agriculture is the segmentation of the plot into management zones, aiming at maximizing profits according to the productive potential of each zone, being economically viable even for small producers. Considering that climate factors directly influence yield, this study describes the development of a sensor network for climate monitoring of management zones (microclimates), allowing the identification of climate factors that influence yield at each of its stages.•Application of the internet of things to assist in decision making in the agricultural production system.•AgDataBox (ADB-IoT) web platform has an Application Programming Interface (API).•An agrometeorological station capable of monitoring all meteorological parameters was developed (Kate 3.0).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA