Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 44374-44384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949732

RESUMO

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.


Assuntos
Nanoestruturas , Termodinâmica , Adsorção , Nanoestruturas/química , Analgésicos/química , Grafite/química , Poluentes Químicos da Água/química , Carbono/química
2.
Environ Sci Pollut Res Int ; 31(23): 34097-34111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693458

RESUMO

Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.


Assuntos
Azul de Metileno , Sementes , Termodinâmica , Poluentes Químicos da Água , Azul de Metileno/química , Cinética , Adsorção , Sementes/química , Poluentes Químicos da Água/química
3.
Environ Technol ; 44(16): 2441-2450, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35044281

RESUMO

The increasing interest of all stakeholders to achieve environmental protection with socioeconomic development puts pressure on industrial processes for less negative impact on the environment. The use of biomass for wastewater treatment has increased due to its low costs and technical feasibility. The present study aimed the use of biomass from a waste of known polluted area for the adsorption of Zn and Cu in a fixed-bed reactor. Samples were collected in Cubatão (Brazil) and cultivated in LB medium. Resulting cultivable bacterial communities were identified as Enterococcus faecalis and Pseudomonas aeruginosa. Adsorption experiments were performed varying the metallic ion concentration and the amount of biomass. Adsorption experiments showed efficiency rates up to 90%. As the concentration of metallic ions increased, the adsorption efficiency decreased, indicating that the active sites were saturated. Activated charcoal demonstrated lower adsorption rates than biomass. Elution process showed that HNO3 had better efficiency than HCl. Zn adsorption fitted better for Lineweaver-Burk model (Qmax = 200 mg/g of biomass), while Cu adsorption fitted better for Langmuir model (Qmax = 164 mg/g of biomass). Results here demonstrated that the adsorption of Zn and Cu simulating an industrial wastewater by the biomass from a contaminated area is technically feasible.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cobre/química , Zinco/química , Águas Residuárias , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Compostos Orgânicos , Purificação da Água/métodos , Cinética , Poluentes Químicos da Água/química
4.
Bioprocess Biosyst Eng ; 45(7): 1189-1200, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35713785

RESUMO

This work investigates the possibility of using scales of sea bass Dicentrarchus labrax as a low-cost material for the adsorptive removal of methylene blue (MB) cationic dye in aqueous solutions. The physical-chemical characterizations of fish scales in natura (FS-in natura) revealed through thermogravimetry that they are composed of inorganic (hydroxyapatite) and organic (collagen) phases in relatively similar amounts. Spectroscopy analyses show that the interactions of MB with FS-in natura occur mainly in the organic phase layer of the adsorbent. The effects of initial MB concentration (5.0 × 10-4 and 5.0 × 10-3 mol L-1) and temperature (25-55 °C) on the adsorption efficiency of FS-in natura were evaluated. FS-in natura at MB concentration (5.0 × 10-3 and 5.0 × 10-4 mol L-1) exhibited the maximum adsorption capacities of 2.2 × 10-3 mol g-1 at 25 °C and 2.8 × 10-5 mol g-1 at 55 °C, respectively. The pseudo-second-order model represented the adsorption kinetics well, and the equilibrium isotherm data were better correlated using the Langmuir equation. The newly developed neural model demonstrated a high predictive capacity with an R-value greater than 0.99 and reduced values for mean squared error, root mean squared error, and mean absolute error equal to 0.003, 0.055, and 0.0348, respectively. The genetic algorithm was used to optimize the experimental conditions of the process. In conclusion, the sea bass scales have promising prospects as a low-cost alternative material for removing cationic dyes from aqueous solutions.


Assuntos
Bass , Poluentes Químicos da Água , Adsorção , Animais , Biodegradação Ambiental , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Termodinâmica , Água , Poluentes Químicos da Água/química
5.
R Soc Open Sci ; 9(3): 211644, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35291324

RESUMO

Copper has been proven to have hazardous effects on human beings depending on its concentration levels. Recently, there has been a growing interest in developing geopolymers using local industrial minerals and by-products. However, research on the adsorption of heavy metals by geopolymer based on mordenite-rich tuffs is still limited. The geopolymer adsorbents have been synthesized using natural Ecuadorian zeolite-rich tuffs containing quartz, mordenite calcite and amorphous content with 20.8%, 28.5%, 4.2% and 46.4%, respectively. The geopolymers showed a maximum compressive strength of 26.86 MPa for 28 d of curing time. In the present study, an Ecuadorian zeolite-based geopolymer's removal capacity on copper ions in aqueous solutions, varying concentration and contact time were tested. Kinetic models were developed using pseudo first-order, pseudo second-order and the Elovich model. The adsorption data, using Cu2+ concentrations from 20 to 160 ppm, at 25°C were described by the Langmuir and Freundlich isotherms. Linear coefficient of determination (R 2) results show that the Langmuir model fits the best. The attained adsorption capacity of 52.63 mg g-1 demonstrates the low-cost geopolymer's effectiveness for this study and its competitiveness compared with other studies. Adsorption kinetics follows the pseudo second-order kinetics model at the lower initial concentration of Cu2+.

6.
Materials (Basel) ; 15(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160674

RESUMO

Magnetic composites obtained by impregnation of lignocellulosic biomass with magnetite nanoparticles were used for zinc(II) removal from aqueous synthetic solutions. Laurel, canelo and eucalyptus sawdust, with a particle size between 74 and 150 µm were used as support. Structural and morphological examinations of the composites confirmed the presence of magnetite nanoparticles in the lignocellulosic support. Transmission Electron Microscopy showed nanoparticles with diameters of about 20 nm. The maximum removal efficiencies for 7 g L-1 of modified adsorbent were increased to 98.9, 98.8 and 97.6% for laurel, canelo and eucalyptus magnetic composites, respectively, in comparison to 60.9, 46.0 and 33.3%, for corresponding unmodified adsorbents. Adsorption data was analyzed using pseudo-first, pseudo-second order and intra-particle diffusion kinetic models and various isotherm models. The results determined that Freundlich isotherm fits the Zn ions adsorption on magnetite modified adsorbents while chemisorption and boundary diffusion were dominating the process.

7.
Braz. J. Pharm. Sci. (Online) ; 58: e201875, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403725

RESUMO

Abstract Two polyurethane foam-based sorbents (PUF) were synthesized by imprinting and grafting techniques and examined for selective separation and preconcentration of caffeine (CAF) in some pharmaceutical products and in black tea. Molecularly imprinted PUF was synthesized based on hydrogen-bonding interactions between CAF and alizarin yellow G (AYG) and subsequent polymerization into PUF. The static experiments indicated optimum sorption conditions at pH=6.5 and 5.5 for imprinted PUF (AY-IPUF) and grafted PUF (AY-GPUF), respectively. In the online experiments, the suitable preconcentration time was found to be 40 and 20s for (AY-IPUF) and (AY-GPUF), respectively, at a flow rate of 1.75 mL.min-1. Desorption of CAF has been affected by passing 500 µL of 0.05, 0.01 mol.L−1 HCl eluent onto (AY-IPUF) and (AY-GPUF), respectively. The online methods have provided satisfactory enrichment factors of 8.4 and 10.5 for (AY-IPUF) and (AY-GPUF), respectively. The time consumed for preconcentartion, elution and determination steps was 1.48 and 1.05 min, thus, the throughput was 42 and 57 h-1, for (AY-IPUF) and (AY-GPUF), respectively. The developed sorbents were studied for the determination of CAF in pharmaceutical samples which will be helpful to minimize caffeinism. Finally, in silico bioactivity, ADMET and drug-likeness predictive computational studies of caffeine were also carried out


Assuntos
Poliuretanos/efeitos adversos , Cafeína/efeitos adversos , Polimerização , Chá , Farmacocinética , Preparações Farmacêuticas/análise , Concentração de Íons de Hidrogênio
8.
Environ Sci Pollut Res Int ; 28(35): 48666-48680, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913112

RESUMO

In this work, chitosan/alginate composites were developed by the gelation method with the addition of different amounts of activated carbon produced from tannery waste (ACTW). The performance of these composites was verified through the adsorption of the textile dye Remazol Brilliant Blue R (RBBR). A synergistic effect was observed by the addition of ACTW; with a specific surface area up to 45.584 m2/g, the maximum adsorption capacity was 300.96 mg/g. The synergy was due to the reduction in steric hindrance, with the adsorption capacity 1.2 times higher than expected. The material was regenerated with sodium hydroxide for 10 cycles. The composite containing 30% ACTW (AC30) was applied in the treatment of real textile effluent, with 30% reductions in the biochemical oxygen demand (BOD), 39% in the chemical oxygen demand (COD), 78% in turbidity, and 67% in color.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Alginatos , Carvão Vegetal , Corantes , Concentração de Íons de Hidrogênio , Cinética
9.
Pharmaceutics ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327588

RESUMO

Metronidazole (MT) is an important drug available for Helicobacter pylori infection treatment. However, in the past few years, this drug has presented effective reduction for infection control, one of the most important reasons is attributed to the reduction of retention time in the stomach environment. Mucoadhesive nanostructured polyelectrolyte complexes (nano PECs) based on chitosan (CS) and hypromellose phthalate (HP) were rationally developed using a full factorial design (21 × 21 × 31), for the incorporation of MT based on the enhancement of the antimicrobial potential against active Helicobacter pylori, in the stomach. Different mass ratios of CS:HP (w/w) were tested, reaching the most promising ratios of 1:0.1, 1:0.5, and 1:1, and two methods of polymers addition (pouring-I and drip-II) were also evaluated. From method I, the obtained particles presented a diameter in the range of 811-1293 nm (Z-average) and a polydispersity index (PDI) between 0.47 and 0.88. By method II, there was a significant reduction in diameter and PDI to 553-739 nm and 0.23 at 0.34, respectively. The drug incorporation also resulted in a reduction in the diameter and PDI of the nano PECs. All samples showed positive zeta potential, about 20 mV, and a high percentage of MT incorporation (±95%). The method factor presented a greater influence on the nano PECs characteristics. Interactions in the system constituents were indicated by the FTIR data. Nano PECs mucoadhesiveness was observed and the composition and charge density were responsible for this phenomenon. MT dissolution evaluation showed the similarity of the dissolution profiles of free and loaded MT, in which almost 100% of the drug was in the simulated gastric medium in 120 min of testing. The in vitro antimicrobial potential against H. pylori of loaded nano PECs were measured and the minimum inhibitory concentration observed for free MT was >2000 µg/mL, while for the incorporated MT lower values were observed, showing an increase in the encapsulated MT activity.

10.
Polymers (Basel) ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143285

RESUMO

In this paper, we consider amaranth starch extracted from the seeds of Amaranthus hypochondriacus L. An amphiphilic character is conferred to the starch by a chemical modification, which involves an esterification by lauroyl chloride at three modification levels. The degree of substitution (DS) after the modification ranged from 0.06 to 1.16. X-ray photoelectron spectroscopy analysis confirmed the presence of fatty acyl chains on the surface of the esterified starches. The hydrophobicity of starches was confirmed by their adsorption isotherms, which showed a decrease in the moisture adsorption of lauroylated as DS increased. X-ray diffraction analysis revealed a higher crystallinity, which was observed in the two samples subjected to the highest levels of modification. A higher crystallinity is related to a higher gelatinization enthalpy. These results are in agreement with the thermal characterization obtained by differential scanning calorimetry (DSC). An inhibition of the retrogradation properties of lauroylated amaranth starches was also observed.

11.
J Environ Sci Health B ; 55(9): 767-782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586186

RESUMO

Activated biocarbons were prepared using biomass wastes: sugarcane bagasse, coconut shell and endocarp of babassu coconut; as a renewable source of low-cost raw materials and without prior treatments. These activated biocarbons were characterized by textural analysis, solid-state 13C nuclear magnetic resonance spectroscopy, X-ray diffraction and scanning electronic microscopy. Textural analysis results revealed that those activated biocarbons were microporous, with specific surface area values of 547, 991 and 1,068 m2 g-1 from sugarcane bagasse, coconut shell and endocarp of babassu coconut, respectively. The innovation of this work was to evaluate which biomass residue was able to offer the best performance in removing 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from water by adsorption. Adsorption process of 2,4-D was investigated and the Langmuir and Redlich-Peterson models described best the adsorption process, with R2 values within 0.96-0.99. The 2,4-D removal performance were 97% and 99% for the coconut and babassu biocarbons, respectively. qM parameter values obtained from Langmuir model were 153.9, 233.0 and 235.5 mg g-1 using sugarcane bagasse, coconut shell and endocarp of babassu, respectively. In addition, the adsorption kinetics were described nicely by the second-order model and the Gibbs free energy parameter values were negative, pointing to a spontaneous adsorption, as well.


Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Resíduos Industriais , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Ácido 2,4-Diclorofenoxiacético/química , Adsorção , Agricultura , Biomassa , Celulose/química , Cocos/química , Herbicidas/química , Herbicidas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Saccharum/química , Termodinâmica , Poluentes Químicos da Água/química , Difração de Raios X
12.
Artigo em Inglês | MEDLINE | ID: mdl-32347158

RESUMO

This work aimed to produce activated carbon (AC) from brewing industry waste (the malt bagasse) to adsorb Paracetamol. Malt bagasse was characterized by moisture and ash contents and thermogravimetric analysis. Three types of AC were prepared: C400 (400 °C) and C500 (500 °C) under oxidizing atmosphere, and CN550 (550 °C) under nitrogen atmosphere. Some of these ACs were characterized by pH, point of zero charge (pHPZC), infrared spectroscopy, N2 adsorption-desorption isotherms, scanning electron microscopy, and temperature-programed desorption of CO2 and NH3. A pHPZC value < 7.0 and high density of acid sites were identified for CN550. Specific surface areas were between 192.5 and 364.0 m2.g-1. Adsorption kinetic studies were performed in a batch system with 50 mL of Paracetamol solution (100 mg.L-1) under pH 4 and 0.75 g of adsorbent (optimized conditions). The time to reach adsorption equilibrium was 20 min with 98.3% Paracetamol removal for CN550 AC. The pseudo-second order model and the Langmuir isotherm best fitted experimental data. Brewing industry waste can be used as a source of organic matter for AC production, since the percentage of Paracetamol removal in this study showed that CN550 AC presentes high adsorption efficiency and economically viable production.


Assuntos
Acetaminofen/análise , Celulose/química , Carvão Vegetal/química , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Indústria Alimentícia , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
13.
J Environ Sci Health B ; 55(4): 361-375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31880197

RESUMO

Activated carbons are well-known porous materials as an effective adsorbent used for the removal of emerging contaminants, such as herbicides, which are increasingly present in water bodies. Most water treatment plants, specially in Brazil, are unable to completely remove such contaminants by the conventional process and advanced treatment using activated carbons is required. The aim of this paper was to verify the influence of the activated carbons granulometry and specific surface area on the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide removal efficiency using distilled-deionized water and filtered water collected from a conventional Water Treatment Plant. Commercial activated carbons samples used in this work were obtained from two different manufacturers. Activated carbons were analyzed by the specific surface area, pore size and volume distribution, nuclear magnetic resonance, infrared and x-ray spectroscopy, moisture, volatile matter and ash contents. Batch adsorption isotherms experiments were used and performed by Langmuir and Freundlich models. Granular and powdered activated carbons removed over 99% of 2,4-D in distilled water and near to 99% using filtered water. The activated carbons evaluated in this work presented high performance and played a key role in water treatment by removing 2,4-D herbicide, ensuring the protection of human health and the ecosystem.


Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Carvão Vegetal/química , Herbicidas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Ácido 2,4-Diclorofenoxiacético/química , Adsorção , Brasil , Herbicidas/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Difração de Raios X
14.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779151

RESUMO

Parabens (alkyl-p-hidroxybenzoates) are antimicrobial preservatives used in personal care products, classified as an endocrine disruptor, so they are considered emerging contaminants. A raw version of activated carbons obtained from African palm shell (Elaeis guineensis) modified chemically by impregnation with salts of CaCl2 (GC2), MgCl2 (GM2) and Cu(NO3)2 (GCu2) at 2% wt/v and carbonized in CO2 atmosphere at 1173 K was prepared. The process of adsorption of methyl (MePB) and ethylparaben (EtPB) from aqueous solution on the activated carbons at 18 °C was studied and related to the interactions between the adsorbate and the adsorbent, which can be quantified through the determination of immersion enthalpies in aqueous solutions of corresponding paraben, showing the lowest-value carbon GM2, which has a surface area of 608 m2 × g-1, while the highest values correspond to the activated carbon GCu2, with a surface area of 896 m2 × g-1 and the highest content of surface acid sites (0.42 mmol × g-1), such as lactonic and phenolic compounds, which indicates that the adsorbate-adsorbent interactions are favored by the presence of these, with interaction enthalpies that vary between 5.72 and 51.95 J × g-1 for MePB adsorption and 1.24 and 52.38 J × g-1 for EtPB adsorption showing that the process is endothermic.


Assuntos
Carvão Vegetal/química , Parabenos/química , Adsorção , Disruptores Endócrinos/química , Fenóis/química , Água/química , Poluentes Químicos da Água/química
15.
Materials (Basel) ; 12(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387319

RESUMO

The purpose of this work is to make use of vegetables that, although widely found in nature, there are few applications. The weeds used here, Cyanthilium cinereum (L.) H. Rob (CCLHR) and Paspalum maritimum (PMT) found in the Amazon region of Belém state of Pará-Brazil, contribute to the problem of water contamination by the removal of the methylene blue dye through the biosorption process, taking advantage of other materials for economic viability and processing. The influences of parameters such as, biosorbent dose, contact time, and initial concentration of dye were examined. The characterizations were realized using SEM to verify the morphology of the material and spectroscopy in the FTIR region. As for the adsorption mechanism, the physical adsorption mechanism prevailed. The time required for the system to reach equilibrium for both biosorbents was from 50 min, following a kinetics described by the pseudo-second order model. The adsorption isotherm data for PMT were better adjusted to the Langmuir model and the biosorption capacity (qmax) value was (56.1798 mg/g). CCLHR was better adjusted to the Freundlich model and its maximum biosorption capacity was 76.3359 mg/g. Thus, these weed species are promising for the biosorption of methylene blue dye in effluents.

16.
Environ Sci Pollut Res Int ; 26(28): 28481-28489, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30229486

RESUMO

The aim of this work was to study the adsorption and removal of chromium (VI) ions contained in aqueous solutions using a chitosan-based hydrogel synthesized via chemical crosslinking of radical chitosan, polyacrylic acid, and N,N'-methylenebisacrylamide. Fourier-transform infrared spectroscopy confirmed the hydrogel synthesis and presence of reactive functional groups for the adsorption of chromium (VI) ions. The chromium (VI) adsorption mechanism was evaluated using non-linear Langmuir, Freundlich, Redlich-Peterson, and Sips isotherms, with the best fit found by the non-linear Redlich-Peterson isotherm. The maximum chromium (VI) adsorption capacities of the chitosan-based hydrogel were 73.14 and 93.03 mg metal per g dried hydrogel, according to the non-linear Langmuir and Sips isotherm models, respectively. The best kinetic fit was found with the pseudo-nth order kinetic model. The chromium (VI) removal percentage at pH 4.5 and 100 mg L-1 initial metal concentration was 94.72%. The results obtained in this contribution can be useful for future works involving scale-up of a water and wastewater treatment method from a pilot plant to full-scale plant.


Assuntos
Resinas Acrílicas/química , Quitosana/química , Cromo/análise , Hidrogéis/química , Águas Residuárias/química , Adsorção , Cromo/metabolismo , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
17.
Molecules ; 22(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640203

RESUMO

Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC) was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo) was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr) was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L-1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.


Assuntos
Acetaminofen/química , Carbono/química , Soluções/química , Adsorção , Concentração de Íons de Hidrogênio , Espectrofotometria Ultravioleta , Termodinâmica
18.
Semina Ci. agr. ; 37(2): 737-750, mar.-abr. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-23422

RESUMO

The extrusion processing parameters, chemical composition and water content of the flour mixture may affect the structure of rice flour, leading to products with different rheological behavior and hygroscopicity. Therefore, this work aimed to study the rheological properties and water adsorption of mixed flours of broken rice and barley bagasse obtained by extrusion cooking. Samples were prepared from a mixture of grits/bagasse between 82/18 and 73/27 (w/w) with water content between 18.04 and 26.96%, using a single screw extruder. The rheological properties of the extruded flour were determined by a rapid viscosity analyzer to evaluate the cooking profile of the pastes by observing the pasting temperature, maximum viscosity, breakdown and retrogradation. The adsorption process was performed by weighing the samples stored at temperatures of 25, 30, 35 and 45 °C with water activity between 0.112 and 0.973. The isotherms were fitted using the following mathematical models: Halsey, Oswin, Smith, GAB and Peleg. The extruded composite flours were characterized by their lack of initial viscosity. The pasting temperature (40-67 °C), maximum viscosity (690-1146 cP), breakdown viscosity (0-175 cP) and retrogradation (613-1382 cP) were lower than for raw rice flour. The Peleg equation fitted well to the water adsorption data and can be used to represent the sigmoidal type II shape of the water adsorption isotherms for the extruded mixed flours from rice grits and barley bagasse.(AU)


Os parâmetros do processo de extrusão, composição química e teor de água da mistura podem afetar a estrutura da farinha de arroz originando produtos com diferentes comportamentos reológicos e higroscópicos. Por isso, o presente trabalho teve por objetivo estudar as principais propriedades reológicas e de adsorção de água de farinhas mistas de quirera de arroz e bagaço de cevada obtidas por extrusão termoplástica. As amostras foram elaboradas a partir de uma mistura de arroz/bagaço entre 82/18 e 73/27 (m/m) e teor de água entre 18,04 e 26,96%, utilizando-se uma extrusora de parafuso único. As propriedades reológicas das farinhas extrudadas foram determinadas por meio de um determinador rápido de viscosidade avaliando-se o perfil de cozimento das pastas pela observação da temperatura de empastamento, viscosidade máxima, quebra de viscosidade e tendência à retrogradação. O processo de adsorção foi determinado utilizando-se o método gravimétrico estático em temperaturas de 25, 30, 35 e 45 °C e atividades de água entre 0,112 e 0,973. As isotermas foram ajustadas a modelos matemáticos de Halsey, Oswin, Smith, GAB e Peleg. As farinhas mistas extrudadas se caracterizaram por não apresentar viscosidade inicial. A temperatura de empastamento (40-67 °C), viscosidade máxima (690-1146 cP), quebra de viscosidade (0-175 cP) e tendência à retrogradação (613-1382 cP) foram inferiores às da farinha de arroz crua. Os dados de adsorção de água foram bem ajustados pela equação de Peleg, podendo-se utilizar para representar as isotermas de adsorção de água de forma sigmoidal do tipo II das farinhas mistas extrudadas de quirera de arroz e bagaço de cevada.(AU)


Assuntos
Farinha/análise , Hordeum , Oryza
19.
Food Sci Technol Int ; 22(4): 333-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26283712

RESUMO

Physicochemical properties and structural characteristics of whole rice flours with different treatments (soaking, germination and extrusion cooking) were studied. Water solubility, water absorption, crystallinity, adsorption isotherms (BET and GAB models), and glass transition temperature of the samples were determined. Water solubility and water absorption were enhanced by extrusion cooking process (3.17-4.98 vs. 24.1-53.76 g/100 g and 2.77-3.05 vs. 4.46-7.04 ml/g, respectively), but crystallinity was decreased (30-33 vs. 4-16%). Adsorption isotherms showed that extruded samples exhibited higher equilibrium moisture content as compared with their corresponding non-extruded samples (5.0-19.2 vs. 4.0-16.1 g water/g solids). There were no changes in glass transition temperature values in the studied moisture range (3.8-16 g/100 g). These results allow the correct use of whole rice flours with different treatments in foods and also contributed to the knowledge of stabilization of the products.


Assuntos
Fenômenos Químicos , Manipulação de Alimentos , Oryza/química , Grãos Integrais/química , Culinária , Farinha/análise , Germinação , Solubilidade , Amido/química , Temperatura , Viscosidade
20.
Semina ciênc. agrar ; 37(2): 737-750, 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1500315

RESUMO

The extrusion processing parameters, chemical composition and water content of the flour mixture may affect the structure of rice flour, leading to products with different rheological behavior and hygroscopicity. Therefore, this work aimed to study the rheological properties and water adsorption of mixed flours of broken rice and barley bagasse obtained by extrusion cooking. Samples were prepared from a mixture of grits/bagasse between 82/18 and 73/27 (w/w) with water content between 18.04 and 26.96%, using a single screw extruder. The rheological properties of the extruded flour were determined by a rapid viscosity analyzer to evaluate the cooking profile of the pastes by observing the pasting temperature, maximum viscosity, breakdown and retrogradation. The adsorption process was performed by weighing the samples stored at temperatures of 25, 30, 35 and 45 °C with water activity between 0.112 and 0.973. The isotherms were fitted using the following mathematical models: Halsey, Oswin, Smith, GAB and Peleg. The extruded composite flours were characterized by their lack of initial viscosity. The pasting temperature (40-67 °C), maximum viscosity (690-1146 cP), breakdown viscosity (0-175 cP) and retrogradation (613-1382 cP) were lower than for raw rice flour. The Peleg equation fitted well to the water adsorption data and can be used to represent the sigmoidal type II shape of the water adsorption isotherms for the extruded mixed flours from rice grits and barley bagasse.


Os parâmetros do processo de extrusão, composição química e teor de água da mistura podem afetar a estrutura da farinha de arroz originando produtos com diferentes comportamentos reológicos e higroscópicos. Por isso, o presente trabalho teve por objetivo estudar as principais propriedades reológicas e de adsorção de água de farinhas mistas de quirera de arroz e bagaço de cevada obtidas por extrusão termoplástica. As amostras foram elaboradas a partir de uma mistura de arroz/bagaço entre 82/18 e 73/27 (m/m) e teor de água entre 18,04 e 26,96%, utilizando-se uma extrusora de parafuso único. As propriedades reológicas das farinhas extrudadas foram determinadas por meio de um determinador rápido de viscosidade avaliando-se o perfil de cozimento das pastas pela observação da temperatura de empastamento, viscosidade máxima, quebra de viscosidade e tendência à retrogradação. O processo de adsorção foi determinado utilizando-se o método gravimétrico estático em temperaturas de 25, 30, 35 e 45 °C e atividades de água entre 0,112 e 0,973. As isotermas foram ajustadas a modelos matemáticos de Halsey, Oswin, Smith, GAB e Peleg. As farinhas mistas extrudadas se caracterizaram por não apresentar viscosidade inicial. A temperatura de empastamento (40-67 °C), viscosidade máxima (690-1146 cP), quebra de viscosidade (0-175 cP) e tendência à retrogradação (613-1382 cP) foram inferiores às da farinha de arroz crua. Os dados de adsorção de água foram bem ajustados pela equação de Peleg, podendo-se utilizar para representar as isotermas de adsorção de água de forma sigmoidal do tipo II das farinhas mistas extrudadas de quirera de arroz e bagaço de cevada.


Assuntos
Farinha/análise , Hordeum , Oryza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA