Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Heliyon ; 10(14): e34294, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092246

RESUMO

This investigation presents a critical analysis of mouthguard production, focusing on the evaluation of conventional vs additive manufacturing methods, the materials involved, and aspects such as their failure and prevention. It also summarizes the current trends, perspectives, and the main limitations. It is shown that some of the shortcomings can be solved by implementing additive manufacturing technologies, which are systematically reviewed in this research. Due to the specific materials used to produce mouthguards, there are certain additive manufacturing technologies that dominate and a wide variety of raw materials. The costs vary depending on the technology.

2.
Dent Mater ; 40(10): 1685-1691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39095245

RESUMO

OBJECTIVE: To formulate an experimental methacrylate-based photo-polymerizable resin for 3D printing with ytterbium trifluoride as filler and to evaluate the mechanical, physicochemical, and biological properties. METHODS: Resin matrix was formulated with 60 wt% UDMA, 40 wt% TEGDMA, 1 wt% TPO, and 0.01 wt% BHT. Ytterbium Trifluoride was added in concentrations of 1 (G1 %), 2 (G2 %), 3 (G3 %), 4 (G4 %), and 5 (G5 %) wt%. One group remained without filler addition as control (GC). The samples were designed in 3D builder software and printed using a UV-DLP 3D printer. The samples were ultrasonicated with isopropanol and UV cured for 60 min. The resins were tested for degree of conversion (DC), flexural strength, Knoop microhardness, softening in solvent, radiopacity, colorimetric analysis, and cytotoxicity (MTT and SRB). RESULTS: Post-polymerization increased the degree of conversion of all groups (p < 0.05). G2 % showed the highest DC after post-polymerization. G2 % showed no differences in flexural strength from the G1 % and GC (p > 0.05). All groups showed a hardness reduction after solvent immersion. No statistical difference was found in radiopacity, softening in solvent (ΔKHN%), colorimetric spectrophotometry, and cytotoxicity (MTT) (p > 0.05). G1 % showed reduced cell viability for SRB assay (p < 0.05). SIGNIFICANCE: It was possible to produce an experimental photo-polymerizable 3D printable resin with the addition of 2 % ytterbium trifluoride as filler without compromising the mechanical, physicochemical, and biological properties, comparable to the current provisional materials.


Assuntos
Dureza , Teste de Materiais , Metacrilatos , Impressão Tridimensional , Metacrilatos/química , Resistência à Flexão , Polimerização , Polietilenoglicóis/química , Resinas Compostas/química , Ácidos Polimetacrílicos/química , Poliuretanos/química , Colorimetria , Propriedades de Superfície
3.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065309

RESUMO

Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the produced components, particularly the porosity. One approach to solving this problem is to consider it as a non-problem, i.e., taking advantage of the defects. Commercially, LAY-FOMM®60 polymer was successfully used in AM through a material extrusion process. This filament is a blend of two polymers, one of them soluble in water, allowing, after its removal from the printed components, the increase in porosity. The defects produced were exploited to evaluate the metallic ion removal capacity of manufactured components using non-potable tap water. Two experimental setups, continuous and ultrasound-assisted methods, were compared, concerning their water cleaning capacity. Results revealed that continuous setup presented the highest metallic ion removal capacity (>80%) for the following three studied metallic ions: iron, copper, and zinc. High water swelling capacity (~80%) and the increase in porosity of 3D-printed parts played a significant role in the ion sorption capacity. The developed strategy could be considered a custom and affordable alternative to designing complex filtration/separation systems for environmental and wastewater treatment applications.

4.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000613

RESUMO

Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers.

5.
Small ; : e2402419, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004887

RESUMO

This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.

6.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
7.
J Dent ; 147: 105089, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38772449

RESUMO

OBJECTIVE: The purpose of this systematic review and meta-analysis was to evaluate the accuracy (trueness and precision), marginal and internal adaptation, and margin quality of zirconia crowns made by additive manufacturing compared to subtractive manufacturing technology. METHODS: The investigation adhered to the PRISMA-ScR guidelines for systematic reviews and was registered at the Prospero database (n°CRD42023452927). Four electronic databases, including PubMed, Scopus, Embase, and Web of Science and manual search was conducted to find relevant studies published until September 2023. In vitro studies that assessed the trueness and precision, marginal and internal adaptation, and margin quality of printed crowns compared to milled ones were included. Studies on crowns over implants, pontics, temporary restorations, laminates, or exclusively experimental materials were excluded. RESULTS: A total of 9 studies were included in the descriptive reporting and 7 for meta-analysis. The global meta-analysis of the trueness (P<0.74,I2=90 %) and the margin quality (P<0.61,I2=0 %) indicated no significant difference between the root mean square of printed and milled zirconia crowns. The subgroup analysis for the printing system showed a significant effect (P<0.01). The meta-analysis of the crown areas indicated no significant difference in most of the areas, except for the marginal (favoring milled crowns) and axial (favoring printed crowns) areas. For precision and adaptation, both methods showed a clinically acceptable level. CONCLUSIONS: Additive manufacturing technology produces crowns with trueness and margin quality comparable to subtractive manufacturing. Both techniques have demonstrated the ability to produce crowns with precision levels, internal discrepancy, and marginal fit within clinically acceptable limits. CLINICAL SIGNIFICANCE: 3D printing emerges as a promising and potentially applicable alternative method for manufacturing zirconia crowns, as it shows trueness and margin quality comparable to restorations produced by the subtractive method.


Assuntos
Coroas , Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Impressão Tridimensional , Zircônio , Zircônio/química , Humanos , Planejamento de Prótese Dentária/métodos , Desenho Assistido por Computador , Materiais Dentários/química
8.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732730

RESUMO

Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these properties involves the incorporation of nanomaterials, with graphene oxide (GO) being a widely studied option. However, the characterization of SLA-printed GO nanocomposites under various stress loadings remains underexplored in the literature, despite being essential for evaluating their mechanical performance in applications. This study aimed to address this gap by synthesizing GO and incorporating it into a commercial SLA resin at different concentrations (0.2, 0.5, and 1 wt.%). Printed specimens were subjected to pure tension, combined stresses, and pure shear stress modes for comprehensive mechanical characterization. Additionally, failure criteria were provided using the Drucker--Prager model.

9.
Saudi Dent J ; 36(5): 733-739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766297

RESUMO

Introduction: Post-processing (PP) is performed to improve the surface, which can favor microbial adhesion and consequent pathological manifestations that impair the indication of polylactic acid (PLA) obtained by fused filament fabrication (FFF) for biomedical applications. This aims to evaluate the influence of chemical, thermal, and mechanical PP on the adhesion of Streptococcus mutants and Candida albicans, roughness, and wettability of the PLA obtained by FFF with and without thermal aging. Methods: The specimens were designed in the 3D modeling program and printed. The chemical PP was performed by immersion in chloroform, the thermal by the annealing method, and the mechanical by polishing. Thermal aging was performed by alternating the temperature from 5 °C to 55 °C with 5000 cycles. Colony-forming unit (CFU/mL) counting was performed on dual-species biofilm of C. albicans and S. mutans. Roughness was analyzed by rugosimeter and wettability by the sessile drop technique. Data were verified for normality using the Shapiro-Wilk test, two-way ANOVA (α = 0.05) applied for CFU and wettability, and Kruskal-Wallis (α = 0.05) for roughness. Results: Chemical, thermal, and mechanical PP methods showed no influence on CFU/mL of C. albicans (p = 0.296) and S. mutans (p = 0.055). Thermal aging did not influence microbial adhesion. Chemical PP had lower roughness, which had increased after aging. Wettability of the mechanical PP was lower. Conclusions: Post-processing techniques, do not present an influence on the adhesion of S. mutans and C. albicans in PLA obtained by FFF, chemical PP reduced roughness, and mechanical reduced wettability. Thermal aging did not alter the microbial adhesion and altered the roughness and wettability.

10.
Materials (Basel) ; 17(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612010

RESUMO

The present study aimed to characterize the microstructure of a temporary 3D printing polymer-based composite material (Resilab Temp), evaluating its optical properties and mechanical behavior according to different post-curing times. For the analysis of the surface microstructure and establishment of the best printing pattern, samples in bar format following ISO 4049 (25 × 10 × 3 mm) were designed in CAD software (Rhinoceros 6.0), printed on a W3D printer (Wilcos), and light-cured in Anycubic Photon for different lengths of time (no post-curing, 16 min, 32 min, and 60 min). For the structural characterization, analyses were carried out using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The mechanical behavior of this polymer-based composite material was determined based on flexural strength tests and Knoop microhardness. Color and translucency analysis were performed using a spectrophotometer (VITA Easy Shade Advanced 4.0), which was then evaluated in CIELab, using gray, black, and white backgrounds. All analyses were performed immediately after making the samples and repeated after thermal aging over two thousand cycles (5-55 °C). The results obtained were statistically analyzed with a significance level of 5%. FT-IR analysis showed about a 46% degree of conversion on the surface and 37% in the center of the resin sample. The flexural strength was higher for the groups polymerized for 32 min and 1 h, while the Knoop microhardness did not show a statistical difference between the groups. Color and translucency analysis also did not show statistical differences between groups. According to all of the analyses carried out in this study, for the evaluated material, a post-polymerization time of 1 h should be suggested to improve the mechanical performance of 3D-printed devices.

11.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674981

RESUMO

Polymeric blends are employed in the production of filaments for additive manufacturing to balance mechanical and processability properties. The mechanical and thermal properties of polymeric filaments made of poly (lactic acid) (PLA), polyhydroxyalkanoates (PHA), and its blend (PLA-PHA) are investigated herein and correlated to their measured structural and physicochemical properties. PLA exhibits the highest stiffness and tensile strength, but lower toughness. The mechanical properties of the PLA-PHA blend were similar to those of PLA, but with a significantly higher toughness. Despite the lower mechanical properties of neat PHA, incorporating a small amount (12 wt.%) of PHA into PLA significantly enhances toughness (approximately 50%) compared to pure PLA. The synergistic effect is attributed to the spherulitic morphology of blended PHA in PLA, promoting interactions between the amorphous regions of both polymers. Thermal stability is notably improved in the PLA-PHA blend, as determined by thermogravimetric analysis. The blend also exhibits lower cold crystallization and glass transition temperatures as compared to PLA, which is beneficial for additive manufacturing. Following additive manufacturing, X-ray photoelectron spectroscopic showed that the three filaments present an increase in C-C and C=O bonds associated with the loss of C-O bonds. The thermal process induces a slight increase in crystallinity in PHA due to chain reorganization. The study provides insights into the thermal and structural changes occurring during the melting process of additive manufacturing.

12.
J Biomater Appl ; 39(1): 66-79, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38646887

RESUMO

Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores. The in vitro degradation study showed significant loss of mechanical properties compatible with a decrease in molar mass, accompanied by changes in morphology. The histocompatibility association of mesenchymal stem cells from rabbit's bone marrow, and PLDLA-TMC scaffolds, were evaluated in the meniscus regeneration, proving the potential of cell culture at in vivo tissue regeneration. Nine New Zealand rabbits underwent total medial meniscectomy, yielding three treatments: implantation of the seeded PLDLA-TMC scaffold, implantation of the unseeded PLDLA-TMC and negative control (defect without any implant). After 24 weeks, the results revealed the presence of fibrocartilage in the animals treated with polymer. However, the regeneration obtained with the seeded PLDLA-TMC scaffolds with mesenchymal stem cells had become intimal to mature fibrocartilaginous tissue of normal meniscus both macroscopically and histologically. This study demonstrated the effectiveness of the PLDLA-TMC scaffold in meniscus regeneration and the potential of mesenchymal stem cells in tissue engineering, without the use of growth factors. It is concluded that bioresorbable polymers represent a promising alternative for tissue regeneration.


Assuntos
Dioxanos , Células-Tronco Mesenquimais , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Dioxanos/química , Poliésteres/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Menisco/citologia , Regeneração , Transplante de Células-Tronco Mesenquimais/métodos , Porosidade , Teste de Materiais , Implantes Absorvíveis , Células Cultivadas , Polímeros/química
13.
Pharm Dev Technol ; 29(5): 445-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641968

RESUMO

The digital light processing (DLP) printer has proven to be effective in biomedical and pharmaceutical applications, as its printing method does not induce shear and a strong temperature on the resin. In addition, the DLP printer has good resolution and print quality, which makes it possible to print complex structures with a customized shape, being used for various purposes ranging from jewelry application to biomedical and pharmaceutical areas. The big disadvantage of DLP is the lack of a biocompatible and non-toxic resin on the market. To overcome this limitation, an ideal resin for biomedical and pharmaceutical use is needed. The resin must have appropriate properties, so that the desired format is printed when with a determined wavelength is applied. Thus, the aim of this work is to bring the basic characteristics of the resins used by this printing method and the minimum requirements to start printing by DLP for pharmaceutical and biomedical applications. The DLP method has proven to be effective in obtaining pharmaceutical devices such as drug delivery systems. Furthermore, this technology allows the printing of devices of ideal size, shape and dosage, providing the patient with personalized treatment.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Luz , Humanos , Resinas Sintéticas/química , Impressão/métodos
14.
Anal Chim Acta ; 1299: 342429, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499426

RESUMO

3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.


Assuntos
Microtecnologia , Impressão Tridimensional , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos Lab-On-A-Chip
15.
Heliyon ; 10(5): e26641, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444512

RESUMO

Additive Manufacturing (AM) has recently demonstrated significant medical progress. Due to advancements in materials and methodologies, various processes have been developed to cater to the medical sector's requirements, including bioprinting and 4D, 5D, and 6D printing. However, only a few studies have captured these emerging trends and their medical applications. Therefore, this overview presents an analysis of the advancements and achievements obtained in AM for the medical industry, focusing on the principal trends identified in the annual report of AM3DP.

16.
J Prosthodont ; 33(S1): 70-80, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38513224

RESUMO

PURPOSE: To assess vertical and horizontal fit, screw removal torque, and stress analysis (considered biomechanical aspects) of full-arch implant frameworks manufactured in Ti-6Al-4V through milling, and additive manufacturing Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM), and the effect of the thermo-mechanical treatment Hot Isostatic Pressing (HIP) as a post-treatment after manufacturing. MATERIAL AND METHODS: Maxillary full-arch implant frameworks were made by milling, DMLS, and EBM. The biomechanical assessments were screw removal torque, strain-gauge analyses, and vertical and horizontal marginal fits. The vertical fit was assessed by the single-screw test and with all screws tightened. All frameworks were submitted to a standardized HIP cycle (920°C, 1000 bar pressure, 2 h), and the tests were repeated (α = 0.05). RESULTS: At the initial time, milled frameworks presented higher screw removal torque values, and DMLS and EBM frameworks presented lower levels of strain. Using the single-screw test, milled and DMLS frameworks presented higher vertical fit values, and with all screws tightened and horizontally, higher fit values were found for milled frameworks, followed by DMLS and EBM. After HIP, milling and EBM frameworks presented higher screw removal torque values; the lowest strain values were found for EBM. Using the single-screw test, milled and DMLS frameworks presented higher vertical fit values, and with all screws tightened and horizontally no differences were found. CONCLUSIONS: DMLS and EBM full-arch frameworks presented adequate values of screw removal torque, strain, and marginal fit, although the worst values of marginal fit were found for EBM frameworks. The HIP cycle enhanced the screw removal torque of milled and EBM frameworks and reduced the strain values of milled frameworks. The HIP represents a reliable post-treatment for Ti-6Al-4V dental prostheses produced by milling and EBM technologies.


Assuntos
Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Titânio , Torque , Humanos , Temperatura Alta , Planejamento de Prótese Dentária , Parafusos Ósseos , Ligas , Teste de Materiais , Pressão , Implantes Dentários
17.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475383

RESUMO

Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade.

18.
Heliyon ; 10(5): e26696, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434418

RESUMO

This study aims to contribute to the promising field of alkali-activated materials (AAM) used in 3D printing for construction. Presented as a comprehensive review, the research provides valuable insights for researchers within and beyond the field. The study focuses on identifying prevalent research trends and accessing pertinent information on materials, methodologies, and parameters of interest. The study commenced with a bibliometric analysis of 55 carefully selected publications, followed by an in-depth review of these articles categorized into extrusion-based and powder-based systems. Emphasis was placed on the materials used, methodologies employed, and key findings from these studies. The bibliometric analysis unveiled prevalent keywords, their relevance in the field, highly cited articles, and collaborative networks among researchers. The most influential countries in terms of publications are Australia, China, and Singapore. The review highlighted commonly used materials and their potential impacts on large-scale applications of AAM, exploring how various precursors, activators, additives, aggregates, and reinforcements shape the properties of printed AAM, featuring innovative approaches with alternative materials. The methodologies employed in these studies and trends in characterization were outlined, due to the absence of standardized tests for materials in 3D printing applications. The study emphasized how material properties vary concerning production processes, printing parameters, curing methods, and post-treatment, outlining advancements in material characterization necessary for achieving a printable mix design. Through the analysis of these 55 articles, key scientific challenges and hurdles in large-scale applications were identified, suggesting potential focal points for further studies. In summary, AAMs exhibit substantial uniqueness and complexity due to their diverse material composition, resulting in varying properties in both fresh and hardened states. However, this diversity also signifies the adaptability of AAMs to diverse equipment, construction techniques, and desired specifications, showcasing their potential to revolutionize traditional construction by integrating technology and sustainability.

19.
3D Print Addit Manuf ; 11(1): 171-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389677

RESUMO

In this work, the role of the binder volumetric fraction used on the consolidation process of Sm-Fe-N-based bonded magnets obtained via the laser powder bed fusion technique has been investigated and explained. The magnetic samples have been obtained via the Selective Laser Sintering (SLS) process, using a mixture of polyamide-12 powder (PA12, DuraForm PA2200) and isotropic Sm-Fe-N melt-spun ribbons (Daido Electronics, Inc.) as feedstocks. The binder content has been varied between 34% and 65% vol. Geometrical density values increased systematically as the PA12 content was increased, reaching a maximum value of ρ = 3.35 g/cm3 (60% vol.), which represents 89% of a fully dense composite. In this composition, the maximum magnetic properties values have been achieved, Jr = 369 mT and (BH)max = 24 kJ/m3. A further increase on the PA12 fraction up to 65% vol. resulted on magnetic samples with 97% relative density, but at the expense of magnetic performance. The formation of a continuous polymeric matrix has been observed via Scanning Electron Microscopy (SEM) analysis when PA12 fraction was on the interval between 60% and 65% vol., not observable for the other explored conditions. Volumetric binder fractions comparable with other published works, which used spherical particles as raw materials for feedstock production, showed inadequate consolidation and required adjustments for proper densification.

20.
Heliyon ; 10(1): e23279, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163102

RESUMO

Wear resistance is one of the properties that must be considered for maintaining the long-term functionality of artificial teeth in dental prostheses. This property can be altered by the method of tooth fabrication, the material, the chewing force, and the relationship to the antagonist tooth. This systematic review evaluated the wear resistance of artificial teeth obtained by the additive manufacturing method and aims to answer the question, "Do artificial teeth for dental prostheses obtained by additive manufacturing show wear resistance similar to prefabricated ones?" The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Checklist guidelines were followed with a customized search in Scopus, PubMed/Medline, Embase, Science Direct, and Google Scholar databases on August 30, 2023. The inclusion criteria were artificial teeth for dental prostheses in acrylic resin by additive manufacturing and comparing the wear resistance with conventional prefabricated teeth, in vitro and English studies, without time restriction. And excluded if 1) do not make artificial teeth by additive manufacturing or that were metal or ceramic teeth; 2) clinical trials, animal studies, review articles, case reports, letters to the editor, short communication, book chapters; 3) another language that is not English. The selection was in two steps, reading the titles and abstracts, followed by reading the selected studies in full. The risk of bias analysis was performed with the adaptation of the quasi-experimental studies tool by Joanna Briggs Institute. Four hundred and twelve articles were found in the databases, after the selection steps and application of eligibility criteria, 6 articles were included for qualitative data analysis and presented low risk of bias. For teeth obtained by additive manufacturing, 2 studies reported lower wear resistance, 2 studies had higher resistance, and 2 similar compared to prefabricated ones. Additive manufactured teeth compared to prefabricated teeth show influences on wear resistance due to differences in material composition, relationship to the antagonist's tooth, applied force, chewing cycles, and processing methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA