RESUMO
A water deficit can negatively impact fruit yield and quality, affecting critical physiological processes. Strategies to mitigate water deficits are crucial to global food security. Iodine (I) may increase the efficiency of the antioxidant system of plants, but its role against water deficits is poorly understood. This study aimed to evaluate the effectiveness of I in attenuating water deficits and improving fruit quality, investigating whether metabolic responses are derived from a "priming effect" or stress relief during water deficits. Tomato plants were exposed to different concentrations of potassium iodide (KI) via a nutrient solution and subjected to a water deficit. A water deficit in tomatoes without KI reduced their yield by 98%. However, a concentration of 100 µM of KI increased the yield under a water deficit by 28%. This condition is correlated with increased antioxidant activity, photosynthetic efficiency improvement, and malondialdehyde reduction. In addition, the concentration of 100 µM of KI promoted better fruit quality through antioxidant capacity and a decline in the maturation index. Therefore, KI can be an alternative for attenuating water deficits in tomatoes, inducing positive responses during the water deficit period while at the same time improving fruit quality.
RESUMO
Water deficit inhibits plant growth by affecting several physiological processes, which leads to the overproduction of reactive oxygen species (ROS) that may cause oxidative stress. In this regard, iodine (I) is already known to possibly enhance the antioxidant defense system of plants and promote photosynthetic improvements under adverse conditions. However, its direct effect on water deficit responses has not yet been demonstrated. To verify the efficiency of I concerning plant tolerance to water deficit, we exposed soybean plants to different concentrations of potassium iodide (KI) fed to pots with a nutrient solution and subsequently submitted them to water deficit. A decline in biomass accumulation was observed in plants under water deficit, while exposure to KI (10 and 20 µmol L-1) increased plant biomass by an average of 40%. Furthermore, exposure to KI concentrations of up to 20 µM improved gas exchange (~71%) and reduced lipid peroxidation. This is related to the higher enzymatic antioxidant activities found at 10 and 20 µM KI concentrations. However, when soybean plants were properly irrigated, KI concentrations greater than 10 µM promoted negative changes in photosynthetic efficiency, as well as in biomass accumulation and partition. In sum, exposure of soybean plants to 10 µM KI improved tolerance to water deficit, and up to this concentration, there is no evidence of phytotoxicity in plants grown under adequate irrigation.
RESUMO
Warming and drought are reducing global crop production with a potential to substantially worsen global malnutrition. As with the green revolution in the last century, plant genetics may offer concrete opportunities to increase yield and crop adaptability. However, the rate at which the threat is happening requires powering new strategies in order to meet the global food demand. In this review, we highlight major recent 'big data' developments from both empirical and theoretical genomics that may speed up the identification, conservation, and breeding of exotic and elite crop varieties with the potential to feed humans. We first emphasize the major bottlenecks to capture and utilize novel sources of variation in abiotic stress (i.e., heat and drought) tolerance. We argue that adaptation of crop wild relatives to dry environments could be informative on how plant phenotypes may react to a drier climate because natural selection has already tested more options than humans ever will. Because isolated pockets of cryptic diversity may still persist in remote semi-arid regions, we encourage new habitat-based population-guided collections for genebanks. We continue discussing how to systematically study abiotic stress tolerance in these crop collections of wild and landraces using geo-referencing and extensive environmental data. By uncovering the genes that underlie the tolerance adaptive trait, natural variation has the potential to be introgressed into elite cultivars. However, unlocking adaptive genetic variation hidden in related wild species and early landraces remains a major challenge for complex traits that, as abiotic stress tolerance, are polygenic (i.e., regulated by many low-effect genes). Therefore, we finish prospecting modern analytical approaches that will serve to overcome this issue. Concretely, genomic prediction, machine learning, and multi-trait gene editing, all offer innovative alternatives to speed up more accurate pre- and breeding efforts toward the increase in crop adaptability and yield, while matching future global food demands in the face of increased heat and drought. In order for these 'big data' approaches to succeed, we advocate for a trans-disciplinary approach with open-source data and long-term funding. The recent developments and perspectives discussed throughout this review ultimately aim to contribute to increased crop adaptability and yield in the face of heat waves and drought events.
Assuntos
Mudança Climática , Produtos Agrícolas/genética , Melhoramento Vegetal/métodos , Polimorfismo Genético , Adaptação Fisiológica , Aprendizado de MáquinaRESUMO
Recent studies predict that global food demand of major grain crops will not be accompanied by the required increase in yield (Hall and Richards, 2013). Additionally, current figures estimate that the impact of climate change on agriculture will yield losses of 8-43%, mainly due to abiotic stresses. A second generation of transgenic crops (SGTC) was projected to mitigate these constraints worldwide. However, SGTC remain unavailable as market products. Here, we present our viewpoints about current limitations and future perspectives.
Assuntos
Agricultura , Produtos Agrícolas , Animais , Mudança Climática , Produtos Agrícolas/genética , Grão Comestível , Estresse FisiológicoRESUMO
Plant endophytic fungi spend all or part of their lives inside host tissues without causing disease symptoms. They can colonize the plant to protect against predators, pathogens and abiotic stresses generated by drought, salinity, high concentrations of heavy metals, UV radiation and temperature fluctuations. They can also promote plant growth through the biosynthesis of phytohormones and nutrient acquisition. In recent years, the study of endophytic fungi for biological control of plant diseases and pests has been intensified to try to reduce the ecological and public health impacts due the use of chemicals and the emergence of fungicide resistance. In this review, we examine 185 patents related to endophytic fungi (from January 1988 to December 2019) and discuss their applicability for abiotic stress tolerance and growth promotion of plants, as agents for biocontrol of herbivores and plant pathogens and bio- and phytoremediation applications.
RESUMO
Stomata are microscopic valves formed by two guard cells flanking a pore, which are located on the epidermis of most aerial plant organs and are used for water and gas exchange between the plant and the atmosphere. The number, size and distribution of stomata are set during development in response to changing environmental conditions, allowing plants to minimize the impact of a stressful environment. In Arabidopsis, STOMATAL DENSITY AND DISTRIBUTION 1 (AtSDD1) negatively regulates stomatal density and optimizes transpiration and water use efficiency (WUE). Despite this, little is known about the function of AtSDD1 orthologs in crop species and their wild stress-tolerant relatives. In this study, SDD1-like from the stress-tolerant wild tomato Solanum chilense (SchSDD1-like) was identified through its close sequence relationship with SDD1-like from Solanum lycopersicum and AtSDD1. Both Solanum SDD1-like transcripts accumulated in high levels in young leaves, suggesting that they play a role in early leaf development. Arabidopsis sdd1-3 plants transformed with SchSDD1-like under a constitutive promoter showed a significant reduction in stomatal leaf density compared with untransformed sdd1-3 plants. Additionally, a leaf dehydration shock test demonstrated that the reduction in stomatal abundance of transgenic plants was sufficient to slow down dehydration. Overexpression of SchSDD1-like in cultivated tomato plants decreased the stomatal index and density of the cotyledons and leaves, and resulted in higher dehydration avoidance. Taken together, these results indicate that SchSDD1-like functions in a similar manner to AtSDD1 and suggest that Arabidopsis and tomatoes share this component of the stomatal development pathway that impinges on water status.
RESUMO
Aquaporins (AQPs) and aquaglyceroporins (AQGPs) are integral membrane proteins that mediate the transport of water and solutes, such as glycerol and urea, across membranes. AQP and AQGP genes represent a valuable tool for biotechnological improvement of plant tolerance to environmental stresses. We previously isolated a gene encoding for an aquaglyceroporin (ThAQGP), which was up-regulated in Trichoderma harzianum during interaction with the plant pathogen Fusarium solani. This gene was introduced into Nicotiana tabacum and plants were physiologically characterized. Under favorable growth conditions, transgenic progenies did not had differences in both germination and growth rates when compared to wild type. However, physiological responses under drought stress revealed that transgenic plants presented significantly higher transpiration rate, stomatal conductance, photosynthetic efficiency and faster turgor recovery than wild type. Quantitative RT-PCR analysis demonstrated the presence of ThAQGP transcripts in transgenic lines, showing the cause-effect relationship between the observed phenotype and the expression of the transgene. Our results underscore the high potential of T. harzianum as a source of genes with promising applications in transgenic plants tolerant to drought stress.
Assuntos
Aquagliceroporinas , Resistência à Doença , Proteínas Fúngicas , Nicotiana , Plantas Geneticamente Modificadas , Trichoderma/genética , Água/metabolismo , Aquagliceroporinas/biossíntese , Aquagliceroporinas/genética , Desidratação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
RESUMO
The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive 'green revolution.' In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses.
RESUMO
Barbados aloe (Aloe vera (L.) Burm. F.) has traditionally been used for healing in natural medicine. However, aloe is now attracting great interest in the global market due to its bioactive chemicals which are extracted from the leaves and used in industrial preparations for pharmaceutical, cosmetic, and food products. Aloe originated from tropical and sub-tropical Africa, but it is also now cultivated in warm climatic areas of Asia, Europe, and America. In this review, the most important factors affecting aloe production are described. We focus on propagation techniques, sustainable agronomic practices and efficient post harvesting and processing systems.
RESUMO
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.