Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 55: 56-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073547

RESUMO

Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC-MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.


Assuntos
Dinoflagellida , Toxinas Marinhas/química , Filogenia , Compostos de Espiro/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Dinoflagellida/química , Dinoflagellida/classificação , Dinoflagellida/citologia , Dinoflagellida/genética , Golfo do México , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA