Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Int J Gen Med ; 17: 3107-3117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049828

RESUMO

Purpose: To analyze the interfering effect of plasma from COVID-19 convalescent adults vaccinated or not with intradermal Bacillus Calmette-Guérin (BCG) on human macrophages. Methods: The BATTLE clinical trial (NCT04369794) was initiated in the 2020 SARS-CoV-2 pandemic to study the safety and efficacy of BCG revaccination of COVID-19 convalescent adults. We measured the expression induction of eleven COVID-19-related genes in human macrophages cultured in plasma taken from 22 BCG vaccinated and 17 placebo patients at baseline and 45 days post-intervention. Subgroup analysis was based on gender, age, job type (healthcare worker [HCW] vs non-HCW), and the presence of anosmia/dysgeusia. Results: Compared to plasma from placebo counterparts, the plasma of BCG vaccinated patients increased the expression induction of interferon (IFN)ß-1b (p = 0.042) in human macrophages. This increase was more pronounced in females and in healthcare workers (HCW) (p = 0.007 and 0.001, respectively). Interferon-induced transmembrane protein 3 (IFITM3) expression induction was increased by plasma from BCG vaccinated females, young age group, and HCWs (p = 0.004, 0.011, and 0.040, respectively). Interleukin (IL)-10 induction increased by the plasma of young BCG recipients (p = 0.008). Induction of IL-6 expression increased by non-HCW BCG recipients plasma but decreased by HCW BCG recipients plasma (p = 0.005). Baseline plasma of patients who presented with anosmia/dysgeusia at the time of admission induced lower angiotensin-converting enzyme 2 (ACE2) compared to those without the symptom (0.76 vs 0.97, p = 0.004). ACE2 expression induction significantly increased by plasma of BCG recipients if they had anosmia/dysgeusia on admission (p = 0.028). Conclusion: The expressions of IFNß-1b, IFITM3, IL-6, and IL-10 in human macrophages incubated with the plasma of COVID-19 convalescent patients were modulated by BCG. These modulations depended on subject-specific characteristics, including gender, age, clinical presentation (anosmia/dysgeusia), job type, and previous exposure to mycobacteria.

2.
Antiviral Res ; 229: 105968, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39004311

RESUMO

Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Animais , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Camundongos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/química , Linhagem Celular , Pneumonia/tratamento farmacológico , Pneumonia/virologia , Pneumonia/prevenção & controle , Pulmão/virologia , Pulmão/patologia , Feminino
3.
Food Res Int ; 189: 114570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876598

RESUMO

Edible insects are recognized as promising food sources due to their nutritional composition. Some species, such as Gryllus assimilis, contain proteins, lipids, and carbohydrates of high biological value, which regulate several metabolic functions, including the Renin-Angiotensin System (RAS). In this context, the present study aimed to assess the effects of dietary supplementation with whole Gryllus assimilis powder on the metabolism of malnourished mice. Thirty-two male Swiss mice were used and divided into four treatment groups. The groups were identified as (AIN93-M); AIN93-M + Gryllus assimilis diet (AIN93-M + GA); AIN93-M + Renutrition diet (AIN93-M + REN) and AIN93-M + Renutrition diet + Gryllus assimilis (AIN93-M + REN + GA). The results showed that whole Gryllus assimilis powder inclusion promotes recovery from protein-energy malnutrition, reduces adiposity, and improves glucose tolerance and insulin sensitivity. It also reduces total cholesterol, triglycerides, VLDL, and adipocyte area. We also observed a significant increase in the expression of RAS-related genes, such as ACE2 and MasR, followed by a reduction in Angiotensinogen and ACE. The main findings of the present study suggest the use of black cricket as a viable strategy for the prevention and treatment of protein-energy malnutrition, as well as the reduction of adiposity, and improvement of lipid and glycemic parameters, with antihypertensive potential.


Assuntos
Tecido Adiposo , Suplementos Nutricionais , Gryllidae , Desnutrição Proteico-Calórica , Sistema Renina-Angiotensina , Animais , Sistema Renina-Angiotensina/efeitos dos fármacos , Masculino , Camundongos , Desnutrição Proteico-Calórica/metabolismo , Desnutrição Proteico-Calórica/dietoterapia , Tecido Adiposo/metabolismo , Adiposidade , Resistência à Insulina
4.
Front Cell Infect Microbiol ; 14: 1355809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606293

RESUMO

During the SARS-CoV-2 pandemic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were constantly under the scientific spotlight, but most studies evaluated ACE2 and TMPRSS2 expression levels in patients infected by SARS-CoV-2. Thus, this study aimed to evaluate the expression levels of both proteins before, during, and after-infection. For that, nasopharyngeal samples from 26 patients were used to measure ACE2/TMPRSS2 ex-pression via qPCR. Symptomatic patients presented lower ACE2 expression levels before and after the infection than those in asymptomatic patients; however, these levels increased during SARS-CoV-2 infection. In addition, symptomatic patients presented higher expression levels of TMPRSS2 pre-infection, which decreased in the following periods. In summary, ACE2 and TMPRSS2 expression levels are potential risk factors for the development of symptomatic COVID-19, and the presence of SARS-CoV-2 potentially modulates those levels.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Serina Endopeptidases , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Serina Endopeptidases/genética
5.
Rev. ADM ; 81(1): 11-15, ene.-feb. 2024. ilus
Artigo em Espanhol | LILACS | ID: biblio-1555721

RESUMO

Introducción: un nuevo tipo de coronavirus que se nombró SARSCoV-2, responsable de la enfermedad por COVID-19, tuvo esparcimiento rápido en el mundo, por alta transmisión que resultó en pandemia. Se registraron 2'397,216 casos confirmados, con 162,956 defunciones en el mundo, de acuerdo con la Organización Mundial de la Salud (OMS), en abril de 2020. Sin embargo, la hipertensión afecta a 40% de adultos, lo que significa que alrededor de 250 millones de personas padecen de presión alta. La OMS, de acuerdo con sus reportes, refiere que la hipertensión es el factor de riesgo número uno de muerte. Uno de cada cuatro mexicanos padece hipertensión arterial. Objetivos: establecer la incidencia de la hipertensión arterial sistémica posterior a padecer COVID-19 en pacientes de la Unidad de Medicina Familiar (UMF) No. 48. Material y métodos: es un estudio transversal, observacional y descriptivo, conformado por 3,238 pacientes con diagnóstico de COVID-19 positivo, de ambos sexos, con edades entre 18 y 70 años. Por medio de la fórmula para poblaciones infinitas se obtiene una muestra de 348 pacientes. Se realizó revisión de expedientes en el Sistema de Información de Medicina Familiar, versión 6.2, para obtención de la información correspondiente. Resultados: 27 pacientes diagnosticados con hipertensión arterial posterior al diagnóstico de COVID-19, 52% del sexo masculino y 48% del femenino, con media de edad de 39 años, 74% correspondió a enfermedad leve por COVID-19 y 26% a enfermedad moderada. Se documenta mediana de ocho días por periodo de infección por COVID-19. En el círculo femenino el promedio de la aparición de hipertensión arterial fue de 13 meses y en el masculino la media de desarrollo de hipertensión arterial posterior a COVID-19 fue de seis meses (AU)


Introduction: a new type of coronavirus that was named SARSCoV-2, responsible for the COVID-19 disease, with rapid spread in the world, due to high transmission that resulted in pandemic. There were 2'397,216 confirmed cases, with 162,956 deaths in the world, according to the WHO in April 2020. However, hypertension affects 40% of adults and means that around 250 million people suffer from high blood pressure. The WHO, according to its reports, refers that hypertension is the number one risk factor for death. One in four Mexicans suffers from high blood pressure. Objectives: to establish the incidence of systemic arterial hypertension after suffering from COVID-19 in patients of the UMF No. 48. Material and methods: it is a cross-sectional, observational and descriptive study, consisting of 3,238 patients with a positive COVID-19 diagnosis of both sexes, aged 18-70 years. Through the formula for infinite populations a sample of 348 patients is obtained. Will proceed with review of files in the Family Medicine Information System, version 6.2, to obtain the corresponding information. Results: 27 patients diagnosed with hypertension after the diagnosis of COVID-19, 52% of the male sex and 48% of the female sex, with a mean age of 39 years; 74% corresponds to a mild illness by COVID-19 and 26% to moderate disease. A median of 8 days per period of infection by COVID-19 is documented. In the female circle, the average onset of hypertension was 13 months and as for the male sex, the mean development of hypertension after COVID-19 was six months (AU)


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , COVID-19/complicações , Hipertensão/etiologia , Fatores de Tempo , Angiotensinas , Epidemiologia Descritiva , Estudos Transversais , Peptidil Dipeptidase A/fisiologia , Distribuição por Idade e Sexo , Gravidade do Paciente , Hipertensão/epidemiologia , México/epidemiologia
6.
Biomedicines ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397885

RESUMO

The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient's clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19.

7.
Infect Genet Evol ; 118: 105564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307396

RESUMO

This pilot study aimed to investigate genetic factors that may have contributed to the milder clinical outcomes of COVID-19 in Brazilian indigenous populations. 263 Indigenous from the Araweté, Kararaô, Parakanã, Xikrin do Bacajá, Kayapó and Munduruku peoples were analyzed, 55.2% women, ages ranging from 10 to 95 years (average 49.5 ± 20.7). Variants in genes involved in the entry of SARS-CoV-2 into the host cell (ACE1 rs1799752 I/D, ACE2 rs2285666 C/T, ACE2 rs73635825 A/G and TMPRSS2 rs123297605 C/T), were genotyped in indigenous peoples from the Brazilian Amazon, treated during the SARS-CoV-2 pandemic between 2020 and 2021. The distribution of genotypes did not show any association with the presence or absence of IgG antibodies. Additionally, the influence of genetic variations on the severity of the disease was not examined extensively because a significant number of indigenous individuals experienced the disease with either mild symptoms or no symptoms. It is worth noting that the frequencies of risk alleles were found to be lower in Indigenous populations compared to both continental populations and Brazilians. Indigenous Brazilian Amazon people exhibited an ethnic-specific genetic profile that may be associated with a milder disease, which could explain the unexpected response they demonstrated to COVID-19, being less impacted than Brazilians.


Assuntos
COVID-19 , Peptidil Dipeptidase A , Serina Endopeptidases , Feminino , Humanos , Masculino , Enzima de Conversão de Angiotensina 2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Peptidil Dipeptidase A/genética , Projetos Piloto , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Indígenas Sul-Americanos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124050, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38402702

RESUMO

Emerging evidence suggests that elevated levels of folic acid in the bloodstream may confer protection against Wuhan-SARS-CoV-2 infection and mitigate its associated symptoms. Notably, two comprehensive studies of COVID-19 patients in Israel and UK uncovered a remarkable trend, wherein individuals with heightened folic acid levels exhibited only mild symptoms and necessitated no ventilatory support. In parallel, research has underscored the potential connection between decreased folic acid levels and the severity of Covid-19 among hospitalized patients. Yet, the underlying mechanisms governing this intriguing inhibition remain elusive. In a quest to elucidate these mechanisms, we conducted a molecular dynamics simulation approach followed by a Raman spectroscopy study to delve into the intricate interplay between the folic acid metabolite, 7,8-dihydrofolate (DHF), and the angiotensin-converting enzyme ACE2 receptor, coupled with its interaction with the receptor-binding domain (RBD) of the Wuhan strain of SARS-CoV-2. Through a meticulous exploration, we scrutinized the transformation of the ACE2 + RBD complex, allowing these reactants to form bonds. This was juxtaposed with a similar investigation where ACE2 was initially permitted to react with DHF, followed by the exposure of the ACE2 + DHF complex to RBD. We find that DHF, when bonded to ACE2, functions as a physical barrier, effectively inhibiting the binding of the Wuhan strain RBD. This physicochemical process offers a cogent explanation for the observed inhibition of host cell infection in subjects receiving supplementary folic acid doses, as epidemiologically substantiated in multiple studies. This study not only sheds light on a potential avenue for mitigating SARS-CoV-2 infection but also underscores the crucial role of folic acid metabolites in host-virus interactions. This research paves the way for novel therapeutic strategies in the battle against COVID-19 and reinforces the significance of investigating the molecular mechanisms underlying the protective effects of folic acid in the context of viral infections.


Assuntos
COVID-19 , Ácido Fólico , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica , Análise Espectral Raman
9.
Curr Aging Sci ; 17(2): 109-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279736

RESUMO

BACKGROUND: COVID-19 created a general challenge to healthcare systems throughout the world and was an important cause of mortality. AIM: The aim of the present study was to report the general evolution of patients with COVID-19 at a teaching hospital and analyze differences by age group and sex considering mortality rates in the years 2020 and 2021 among patients older than 60 years of age. METHODS: A cross-sectional study was conducted with patients hospitalized with a diagnosis of COVID-19 confirmed by RT-PCR at the São Jose do Rio Preto university hospital between March 2020 and March 2022. The patients were male and female patients, of varying ages belonging to the region of Sao Jose do Rio Preto, were accommodated in the wards or intensive care units (ICUs). Overall mortality was analyzed for the hospital as well as in the ICUs and wards. This analysis was performed separately in two years considering age group, sex, and main comorbidities in patients older than 60 years of age. RESULTS: A total of 8032 patients with COVID-19 were hospitalized between March 2020 and March 2022: 2866 patients with 658 deaths (22.92%) in 2020; 4324 patients with 1168 deaths (27.01%) in 2021; and 842 patients with 205 deaths (24.35 %) in 2022 up to the month of March. More than half (53.60%) of the patients were hospitalized in the ICUs and 46.39% were hospitalized in the wards. Differences in the mortality rate were found for the different age groups in the comparison of the years, with more deaths occurring among individuals up to 90 years of age in the second year (p <0.05). Men were affected more and had a higher mortality rate (p <0.0001). The main comorbidities were cardiovascular disease (70.93%), diabetes (37.76%), and obesity (23.68%). CONCLUSION: The mortality rate of older people hospitalized with COVID-19 was higher than the average, it was higher in 2021 compared to 2020 and increased with age. Cardiovascular disease, diabetes, and obesity were the main comorbidities.


Assuntos
COVID-19 , Comorbidade , Mortalidade Hospitalar , Hospitalização , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , COVID-19/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Idoso de 80 Anos ou mais , Prevalência , Brasil/epidemiologia , Hospitalização/estatística & dados numéricos , SARS-CoV-2 , Fatores Etários , Adulto , Fatores Sexuais , Unidades de Terapia Intensiva/estatística & dados numéricos
10.
Rev. chil. cardiol ; 42(3): 143-152, dic. 2023. tab, ilus, graf
Artigo em Espanhol | LILACS | ID: biblio-1529981

RESUMO

Antecedentes: La ECA2 ha mostrado ser un regulador esencial de la funcionalidad cardíaca. En un modelo experimental de insuficiencia cardíaca (IC) con Fier, modelo de coartación de aorta (COA), se encontró activación de la vía Rho-kinasa. La inhibición de esta vía con fasudil no mejoró el remodelado cardíaco ni la disfunción sistólica. Se desconoce en este modelo, si el deterioro de la función cardíaca y activación de la vía rho-kinasa se asocia con una disminución de la ECA2 cardíaca y si la inhibición de Rho-kinasa tiene un efecto sobre la expresión de ECA2. Objetivo: Nuestro objetivo es determinar si en la falla cardaca experimental por coartación aórtica, los niveles proteicos de ECA2 en el miocardio se asocian a disfunción sistólica y cual es su interacción con la actividad de ROCK en el miocardio. Métodos: Ratones C57BL6J machos de 7-8 semanas se randomizaron en 3 grupos experimentales. Grupo COA por anudación de la aorta + vehículo; Grupo COA + Fasudil (100 mg/Kg día) por bomba osmótica desde la semana 5 post-cirugía; y grupo control o Sham. Se determinaron las dimensiones y función cardíaca por ecocardiografía. Posterior a la eutanasia, se determinaron los niveles de ECA2 del VI por Western-blot y actividad de la Rho-kinasa Resultados: En los grupos COA+vehículo y COA-FAS hubo deterioro de la función cardíaca, reflejada por la reducción de la FE (47,9 ± 1,53 y 45,5 ± 2,10, p < 0,05, respectivamente) versus SHAM (68,6 ± 1,19). Además, aumentaron las dimensiones cardíacas y hubo desarrollo de hipertrofia (0,53 ± 0,02 / 0,53 ± 0,01, p < 0,05) medida por aumento de la masa cardíaca relativa respecto del grupo SHAM (0,40 ± 0,01). En los grupos COA+vehículo y COA-FAS se encontró una disminución significativa del 35% en la expresión de ECA2 cardíaca respecto al grupo control. Conclusiones: La disfunción sistólica por coartación aórtica se asocia con aumento de la actividad de Rho-kinasa y significativa disminución de la expresión de ECA2. La inhibición de Rho-kinasa no mejoró el remodelado cardíaco, la disfunción sistólica y tampoco modificó los niveles de ECA2 cardíaca.


Background: ACE2 has been described as an essential regulator of cardiac function. In an experimental model of heart failure (HF) and heart failure reduced ejection fraction (HFrEF), the aortic coarctation (COA) model, activation of the Rho-kinase pathway of cardiac remodeling was found. Inhibition of this pathway did not improve cardiac remodeling or systolic ventricular dysfunction. It is unknown in this model whether the impairment of cardiac function and activation of the rho-kinase pathway is associated with a decrease in ACE2 and whether rho-kinase inhibition has an effect on ACE2 expression. Objective: To determine if in experimental heart failure due to aortic coarctation, ACE2 protein levels in the myocardium are associated with systolic dysfunction and what is its interaction with ROCK activity in the myocardium. Methods: Male C57BL6J mice aged 7-8 weeks were divided into 3 groups and anesthetized: One group underwent COA+ vehicle; A second group COA + Fasudil (100 mg/Kg/d) by osmotic pump from week 5 post-surgery and; the third group, control(SHAM). Echocardiograms were performed to determine cardiac dimensions and systolic function. Rats were then euthanized. Ventricular expression of ACE2, activity of the Rho-kinase pathway by MYPT-1 phosphorylation, relative cardiac mass, area and perimeter of cardiomyocytes were determined by Western blot. Results: In both COA+vehicle and COA+FAS groups there was deterioration of cardiac function, reflected in the reduction of EF (47.9 ± 1.53 and 45.5 ± 2.10, p < 0.05, respectively) versus the SHAM group (68.6 ± 1.19). In addition, cardiac dimensions and hypertrophy increased (0.53 ± 0.02 / 0.53 ± 0.01, p < 0.05) due to increased relative cardiac mass compared to the SHAM group (0.40 ± 0.01). In the COA+vehicle and COA+FAS groups a significant decrease of 35% in cardiac ACE2 expression was found compared to the control group. Conclusions: Systolic dysfunction due to aortic coarctation is associated with increased Rhokinase activity and a significant decrease in ACE2 expression. Rho-kinase inhibition did not improve cardiac remodeling, systolic dysfunction, nor did it change cardiac ACE2 levels.


Assuntos
Animais , Camundongos , Enzima de Conversão de Angiotensina 2 , Insuficiência Cardíaca/enzimologia , Coartação Aórtica , Western Blotting , Hipertrofia Ventricular Esquerda , Disfunção Ventricular Esquerda , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Biol Res ; 56(1): 55, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875978

RESUMO

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a H2S-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet. Therefore, the aim of the study was to determine the effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats, an animal model of human essential hypertension and heart failure, under conditions of ACE2 inhibition induced by the administration of the specific inhibitor MLN-4760 (MLN). RESULTS: Zofenopril reduced MLN-increased visceral fat to body weight ratio although no changes in systolic blood pressure were recorded. Zofenopril administration resulted in a favorable increase in left ventricle ejection fraction and improvement of diastolic function regardless of ACE2 inhibition, which was associated with increased H2S levels in plasma and heart tissue. Similarly, the acute hypotensive responses induced by acetylcholine, L-NAME (NOsynthase inhibitor) and captopril (ACEI) were comparable after zofenopril administration independently from ACE2 inhibition. Although simultaneous treatment with zofenopril and MLN led to increased thoracic aorta vasorelaxation, zofenopril increased the NO component equally regardless of MLN treatment, which was associated with increased NO-synthase activity in aorta and left ventricle. Moreover, unlike in control rats, the endogenous H2S participated in maintaining of aortic endothelial function in MLN-treated rats and the treatment with zofenopril had no impact on this effect. CONCLUSIONS: Zofenopril treatment reduced MLN-induced adiposity and improved cardiac function regardless of ACE2 inhibition. Although the concomitant MLN and zofenopril treatment increased thoracic aorta vasorelaxation capacity, zofenopril increased the participation of H2S and NO in the maintenance of endothelial function independently from ACE2 inhibition. Our results confirmed that the beneficial effects of zofenopril were not affected by ACE2 inhibition, moreover, we assume that ACE2 inhibition itself can lead to the activation of cardiovascular compensatory mechanisms associated with Mas receptor, nitrous and sulfide signaling.


Assuntos
Captopril , Sistema Cardiovascular , Humanos , Ratos , Animais , Captopril/farmacologia , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/farmacologia , Pandemias , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pressão Sanguínea , Hipertensão Essencial
13.
Biol Res ; 56(1): 56, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876016

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. RESULTS: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. CONCLUSIONS: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.


Assuntos
COVID-19 , Conexina 43 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trifosfato de Adenosina
14.
Eur J Med Chem ; 260: 115760, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657273

RESUMO

Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 µM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 µM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 µM to 0.01 µM).


Assuntos
COVID-19 , Canabidiol , Humanos , Canabidiol/farmacologia , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Antivirais/farmacologia
15.
Biotechnol Bioeng ; 120(12): 3602-3611, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37691178

RESUMO

Currently, there is a great need for the development of three-dimensional (3D) in vitro lung models. Particularly, the production of a suitable 3D model of pulmonary epithelium for understanding the pathophysiology of diseases such as the COVID-19 must consider the tissue architecture and presence, for example, of the angiotensin-converting enzyme-2 (ACE-2) in the cells. Different polymeric membranes are being used to support cell culturing, especially of lung cells, however, there is still no information about the culture of these cells onto bacterial nanocellulose (BNC) matrices. We have used the BNC matrix CellFate® as a support for the assembly of a 3D in vitro model of lung epithelium, composed of human lung fibroblasts (HLF) and lung adenocarcinoma cells (CALU-3). CellFate® matrices were made from bacterial fermentation resulting in a natural and biocompatible biopolymer. Cells were cultured onto CellFate® and maintained in a 5% CO2 humidified atmosphere at 37°C. Cell viability was assessed by the resazurin method The samples were, then, exposed to the air-liquid interface (ALI), and histologically analyzed. ACE-2 activity was verified on the hydrolyze of the fluorogenic substrate Mca-APK(Dnp)-OH, and its presence was evaluated by flow cytometry. The expression of the anionic transporter SLCO3A1 was evaluated by qPCR. Cell viability analysis indicates that CellFate® was not toxic to these cells. By flow cytometry, the presence of the ACE-2 was identified in the CALU-3 cells surface corroborating the results obtained from enzymatic activity analysis. The SLCO3A1 transporter expression was identified in cells cultured onto CellFate®, but not in cells cultured onto the transwell (control). CALU-3 cells cultivated onto CellFate® resulted in a pseudostratified organization, a typical morphology of the human respiratory tract epithelium. The current model opens perspectives for studies involving physiological characterization, improving its relevance for the understanding of the pathophysiology of diseases as well as the response to drugs.


Assuntos
Células Epiteliais , Pulmão , Humanos , Células Epiteliais/metabolismo , Células Cultivadas , Sobrevivência Celular , Angiotensinas/metabolismo
16.
Biomater Biosyst ; 11: 100082, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37534107

RESUMO

COVID-19, along with most respiratory diseases in the medical field, demonstrates significant ability to take its toll on global population. There is a particular difficulty in studying these conditions, which stems especially from the short supply of in vitro models for detailed investigation, the specific therapeutic knowledge required for disease scrutinization and the occasional need of BSL-3 [Biosafety Level 3] laboratories for research. Based on this, the process of drug development is hampered to a great extent. In the scenario of COVID-19, this difficulty is even more substantial on account of the current undefinition regarding the exact role of the ACE2 [Angiotensin-converting enzyme 2] receptor upon SARS-CoV-2 kinetics in human cells and the great level of demand in the investigation process of ACE2, which usually requires the laborious and ethically complicated usage of transgenic animal models overexpressing the receptor. Moreover, the rapid progression of the aforementioned diseases, especially COVID-19, poses a crucial necessity for adequate therapeutic solutions emergence. In this context, the work herein presented introduces a groundbreaking set of 3D models, namely spheroids and MatriWell cell culture inserts, whose remarkable ability to mimic the in vivo environment makes them highly suitable for respiratory diseases investigation, particularly SARS-CoV-2 infection. Using MatriWells, we developed an innovative platform for COVID-19 research: a pulmonary air-liquid interface [ALI] associated with endothelial (HUVEC) cells. Infection studies revealed that pulmonary (BEAS-2B) cells in the ALI reached peak viral load at 24h and endothelial cells, at 48h, demonstrating lung viral replication and subsequent hematogenous dissemination, which provides us with a unique and realistic framework for studying COVID-19. Simultaneously, the spheroids were used to address the understudied ACE2 receptor, aiming at a pronounced process of COVID-19 investigation. ACE2 expression not only increased spheroid diameter by 20% (p<0.001) and volume by 60% (p≤0.0001) but also led to a remarkable 640-fold increase in intracellular viral load (p≤0.01). The previously mentioned finding supports ACE2 as a potential target for COVID-19 treatment. Lastly, we observed a higher viral load in the MatriWells compared to spheroids (150-fold, p<0.0001), suggesting the MatriWells as a more appropriate approach for COVID-19 investigation. By establishing an advanced method for respiratory tract conditions research, this work paves the way toward an efficacious process of drug development, contributing to a change in the course of respiratory diseases such as COVID-19.

17.
Inflamm Res ; 72(8): 1719-1731, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37537367

RESUMO

OBJECTIVE AND DESIGN: Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS: 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS: Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS: We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION: Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/fisiologia
18.
Protein Sci ; 32(8): e4721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37405395

RESUMO

The interaction between the receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 and the peptidase domain of the human angiotensin-converting enzyme 2 (ACE2) allows the first specific contact at the virus-cell interface making it the main target of neutralizing antibodies. Here, we show a unique and cost-effective protocol using Drosophila S2 cells to produce both RBD and soluble human ACE2 peptidase domain (shACE2) as thermostable proteins, purified via Strep-tag with yields >40 mg L-1 in a laboratory scale. Furthermore, we demonstrate its binding with KD values in the lower nanomolar range (independently of Strep-tag removal) and its capability to be blocked by serum antibodies in a competition ELISA with Strep-Tactin-HRP as a proof-of-concept. In addition, we assess the capacity of RBD to bind native dimeric ACE2 overexpressed in human cells and its antigen properties with specific serum antibodies. Finally, for completeness, we analyzed RBD microheterogeneity associated with glycosylation and negative charges, with negligible effect on binding either with antibodies or shACE2. Our system represents an accessible and reliable tool for designing in-house surrogate virus neutralization tests (sVNTs), enabling the rapid characterization of neutralizing humoral responses elicited against vaccines or infection, especially in the absence of facilities to conduct virus neutralization tests. Moreover, our biophysical and biochemical characterization of RBD and shACE2 produced in S2 cells lays the groundwork for adapting to different variants of concern (VOCs) to study humoral responses elicited against different VOCs and vaccine formulations.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animais , Humanos , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Drosophila/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química
19.
Curr Neuropharmacol ; 21(10): 2110-2125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326113

RESUMO

The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites. In addition, they can have a positive effect on neuroinflammation secondary to pathologies other than COVID-19. The aim of this study is to analyze the molecular mechanisms that link estrogens with their possible therapeutic effect for neuroinflammation related to COVID-19. Advanced searches were performed in scientific databases as Pub- Med, ProQuest, EBSCO, the Science Citation index, and clinical trials. Estrogens have been shown to participate in the immune modulation of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to this mechanism, we propose that estrogens can regulate the expression and activity of the Angiotensin-converting enzyme 2 (ACE2), reestablishing its cytoprotective function, which may be limited by its interaction with SARS-CoV-2. In this proposal, estrogens and estrogenic compounds could increase the synthesis of Angiotensin-(1-7) (Ang-(1-7)) that acts through the Mas receptor (MasR) in cells that are being attacked by the virus. Estrogens can be a promising, accessible, and low-cost treatment for neuroprotection and neuroinflammation in patients with COVID-19, due to its direct immunomodulatory capacity in decreasing cytokine storm and increasing cytoprotective capacity of the axis ACE2/Ang (1-7)/MasR.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina/fisiologia , Peptidil Dipeptidase A/metabolismo , Doenças Neuroinflamatórias , Estrogênios/uso terapêutico , Neuroproteção , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico
20.
Inform Med Unlocked ; 40: 101278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305192

RESUMO

The emergence of the new SARS-CoV-2 virus, which causes the disease known as COVID-19, has generated a pandemic that has plunged the world into a health crisis. The infection process is triggered by the direct binding of the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2) of the host cell. In the present study, virtual screening techniques such as molecular docking, molecular dynamics, calculation of free energy using the GBSA method, prediction of drug similarity, pharmacokinetic, and toxicological properties of various ligands interacting with the RBD-ACE2 complex were applied. The ligands radotinib, hinokiflavone, and ginkgetin were identified as potential destabilizers of the RBD-ACE2 interaction, which could produce their pharmacological effect by interacting at an allosteric site of ACE2, with affinity energy values of -10.2 ± 0.1, -9.8 ± 0.0, and -9.4 ± 0.0 kcal/mol, indicating strong receptor affinity. The complex with hinokiflavone showed the highest conformational stability and rigidity of the dynamic simulation and also obtained the best binding free energy of the three molecules, with an energy of -215.86 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA