Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1815: 385-396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981137

RESUMO

Transcription factors are proteins that help with the control and regulation in the transcription of the DNA to mRNA by binding to special DNA sequences. With the aim to understand more about gene transcription regulation in Theobroma cacao L., this review outlines the principal transcription factors that were reported in other plants especially Arabidopsis thaliana and attempts at looking for the homologies with transcription factors in T. cacao. The information cited in this work is about the initiation, development, and maturation of the cacao somatic embryos and other crops. It is important to underline that there are very few publications in T. cacao discussing transcription factors that control the somatic embryogenesis process, but there is some information about transcription factors in other crops that we have used as a guide to try to understand this process.


Assuntos
Cacau/embriologia , Técnicas de Embriogênese Somática de Plantas/métodos , Fatores de Transcrição/metabolismo , Desenvolvimento Vegetal
2.
Oncotarget ; 8(40): 67769-67781, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978070

RESUMO

We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo. The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3ß. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation.

3.
Front Plant Sci ; 8: 277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293251

RESUMO

Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron-sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

4.
Oncotarget ; 7(18): 25960-70, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27036019

RESUMO

We previously reported that ABI3 expression was decreased in thyroid cancer tissues and that ectopic expression of ABI3 in a follicular thyroid carcinoma cell line delayed cell cycle progression and inhibited cell proliferation, invasion, migration and tumor formation in athymic mice. These data indicated that ABI3 is a tumor suppressor gene; however the mechanism through which ABI3 is silenced in thyroid carcinomas is unknown. We here show that treatment of four follicular thyroid carcinoma cell lines with 5-aza-dC induced demethylation of a specific region of the ABI3 promoter and restored ABI3 expression. In contrast, 5-aza-dC treatment did not restore ABI3 expression in a non-thyroid cell line, suggesting a tissue-specific regulation. We additionally show that 8 CpG sites located within the ABI3 promoter are hypermethylated in most thyroid carcinoma samples and the degree of methylation correlated with ABI3 expression. Narrowing the region to specific CpG sites, the CpG4-6 sites showed the largest difference between benign and malignant lesions. In silico analysis revealed that these CpG sites flank a canonical binding site for NKX2-1, a thyroid specific transcriptional factor. Analysis of thyroid samples shows a correlation between NKX2-1 and ABI3 expression. In vitro assays demonstrate that NKX2-1 was required for ABI3 expression. Luciferase assay further confirmed the promoter activity of this region, which was increased when the cells were co-transfected with NKX2-1. Our study shows that the transcriptional silencing of ABI3 in cancer cells occurs via methylation and uncovered a previously unrecognized role for NKX2-1 in the regulation of ABI3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ilhas de CpG , Inativação Gênica , Humanos , Regiões Promotoras Genéticas , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA