Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(8): e14883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097919

RESUMO

BACKGROUND: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed, a decrease in Treg number and function has been reported in PD. In this context, pramipexole, a dopaminergic receptor agonist used to treat PD symptoms, has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells. METHODS: Treg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28-activated and non-activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co-cultured with in vitro-differentiated human dopaminergic neurons in a cytotoxicity assay with 6-hydroxydopamine (6-OHDA). The role of interleukin-10 (IL-10) was investigated by co-culturing activated IL-10-producing Treg cells with neurons. To further investigate the effect of treatment on Tregs, gene expression in pramipexole-treated, CD3/CD28-activated Treg cells was determined by Fluidigm analysis. RESULTS: Pramipexole-treated CD3/CD28-activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6-OHDA. Pramipexole-treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL-10 release and the activation of genes associated with regulation and neuroprotection. CONCLUSION: Anti-CD3/CD28-activated Treg cells protect dopaminergic neurons against 6-OHDA-induced damage. In addition, activated, IL-10-producing, pramipexole-treated Tregs also induced a neuroprotective effect, and the supernatants of these co-cultures promoted axonal growth. Pramipexole-treated, activated Tregs altered their gene expression in a concentration-dependent manner, and enhanced TGFß-related dopamine receptor regulation and immune-related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD.


Assuntos
Benzotiazóis , Neurônios Dopaminérgicos , Oxidopamina , Pramipexol , Linfócitos T Reguladores , Humanos , Pramipexol/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Oxidopamina/toxicidade , Benzotiazóis/farmacologia , Técnicas de Cocultura , Interleucina-10/metabolismo , Células Cultivadas , Fármacos Neuroprotetores/farmacologia , Agonistas de Dopamina/farmacologia
2.
Cytotherapy ; 26(9): 1052-1061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38739074

RESUMO

BACKGROUND: In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS: DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS: Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of ßIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS: Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.


Assuntos
Diferenciação Celular , Polpa Dentária , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Células-Tronco Mesenquimais , Oxidopamina , Doença de Parkinson , Humanos , Animais , Polpa Dentária/citologia , Oxidopamina/farmacologia , Ratos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Doença de Parkinson/terapia , Masculino , Células Estromais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Cultivadas
3.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569578

RESUMO

Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Oxidopamina , Doenças Neurodegenerativas/complicações , Qualidade de Vida , Alanina
4.
Brain Behav Immun Health ; 30: 100623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096172

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1ß and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.

5.
Neural Regen Res ; 18(8): 1652-1656, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751775

RESUMO

The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca2+ influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.

6.
Toxics ; 10(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36287863

RESUMO

This study evaluated the neuroprotective effects of the Africanized bee venom (BV) and its mechanisms of action after 6-hydroxydopamine-(6-OHDA)-induced lesion in a mice model. Prior to BV treatment, mice received intrastriatal microinjections of 6-OHDA (no induced dopaminergic neuronal death) or ascorbate saline (as a control). BV was administered subcutaneously at different dosages (0.01, 0.05 or 0.1 mg·Kg-1) once every two days over a period of 3 weeks. The open field test was carried out, together with the immunohistochemical and histopathological analysis. The chemical composition of BV was also assessed, identifying the highest concentrations of apamin, phospholipase A2 and melittin. In the behavioral evaluation, the BV (0.1 mg·Kg-1) counteracted the 6-OHDA-induced decrease in crossings and rearing. 6-OHDA caused loss of dopaminergic cell bodies in the substantia nigra pars compacta and fibers in striatum (STR). Mice that received 0.01 mg·Kg-1 showed significant increase in the mean survival of dopaminergic cell bodies. Increased astrocytic infiltration occurred in the STR of 6-OHDA injected mice, differently from those of the groups treated with BV. The results suggested that Africanized BV has neuroprotective activity in an animal model of Parkinson's disease.

7.
Neurotox Res ; 40(2): 573-584, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380367

RESUMO

The development, at the experimental level, of therapeutic strategies based on natural products to attenuate neurological alterations in degenerative disorders has gained attention. Antioxidant molecules exhibit both anti-inflammatory and neuroprotective properties. Alpha-mangostin (α-Man) is a natural xanthonoid isolated from the mangosteen tree with demonstrated antioxidant and cytoprotective properties. In this study, we investigated the antioxidant and protective properties of α-Man, both ex vivo and in vivo. We assessed the mitochondrial reductant capacity and oxidative damage to lipids in rat cortical slices, and several endpoints characteristic of physiological stress in the nematode, Caenorhabditis elegans (C. elegans), upon exposure to the parkinsonian neurotoxin, 6-hydroxydopamine (6-OHDA). In rat cortical slices, α-Man (25 and 50 µM) reduced the 6-OHDA (100 µM)-induced oxidative damage to lipid levels, but failed to reverse loss in cell viability. In wild-type (N2) C. elegans, α-Man (5-100 µM) protected against 6-OHDA (25 mM)-induced decrease in survival when administered either as pre- or post-treatment. Protective effects of α-Man were also observed on survival in the VC1772 strain (skn-1 KO-) exposed to 6-OHDA, though the extent of the protection was lesser than in the wild-type N2 strain. However, α-Man (5-50 µM) failed to attenuate the 6-OHDA-induced motor alterations in the N2 strain. The loss of lifespan induced by 6-OHDA in the N2 strain was fully reversed by high concentrations of α-Man. In addition, while 6-OHDA decreased the expression of glutathione S-transferase in the CL2166 C. elegans strain, α-Man preserved and stimulated the expression of this protein. α-Man (25 µM) also prevented 6-OHDA-induced dopaminergic neurodegeneration in the BZ555 C. elegans strain. Altogether, our novel results suggest that α-Man affords partial protection against several, but not all, short-term toxic effects induced by 6-OHDA in cortical slices and in a skn-1-dependent manner in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo , Oxidopamina/metabolismo , Oxidopamina/toxicidade , Ratos , Xantonas
8.
Life Sci ; 299: 120554, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452639

RESUMO

Nowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models. Particularly, ER stress is buffered by the unfolded protein response (UPR) activation, which is the first instance in orchestrating the recovery of ER function. Interestingly, different studies highlight a close interrelationship between ER stress and oxidative stress, two events driven by the accumulation of reactive oxygen species (ROS). This response inevitably perpetuates itself and acts as a vicious cycle that triggers the development of different pathologies, such as cardiovascular diseases, neurodegenerative diseases, and others. Accordingly, it is vital to target ER stress and oxidative stress to increase the effectiveness of clinical therapies used to treat these diseases. Therefore, our study is focused on the role of SFN in preserving cellular homeostasis balance by regulating the ER stress response through the Nrf2-modulated antioxidant pathway.


Assuntos
Antioxidantes , Isotiocianatos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Homeostase , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Resposta a Proteínas não Dobradas
9.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328335

RESUMO

Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase-3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Flavonas , Glucosídeos , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Tretinoína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
IBRO Neurosci Rep ; 13: 378-387, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590096

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder. Although it is clear that dopaminergic neurons degenerate, the underlying molecular mechanisms are still unknown, and thus, successful treatment is still elusive. One pro-apoptotic pathway associated with several neurodegenerative diseases is the tyrosine kinase c-Abl and its target p73. Here, we evaluated the contribution of c-Abl and p73 in the degeneration of dopaminergic neurons induced by the neurotoxin 6-hydroxydopamine as a model for Parkinson's disease. First, we found that in SH-SY5Y cells treated with 6-hydroxydopamine, c-Abl and p73 phosphorylation levels were up-regulated. Also, we found that the pro-apoptotic p73 isoform TAp73 was up-regulated. Then, to evaluate whether c-Abl tyrosine kinase activity is necessary for 6-hydroxydopamine-induced apoptosis, we co-treated SH-SY5Y cells with 6-hydroxydopamine and Imatinib, a c-Abl specific inhibitor, observing that Imatinib prevented p73 phosphorylation, TAp73 up-regulation, and protected SH-SY5Y cells treated with 6-hydroxydopamine from apoptosis. Interestingly, this observation was confirmed in the c-Abl conditional null mice, where 6-hydroxydopamine stereotaxic injections induced a lesser reduction of dopaminergic neurons than in the wild-type mice significantly. Finally, we found that the intraperitoneal administration of Imatinib prevented the death of dopaminergic neurons induced by injecting 6-hydroxydopamine stereotaxically in the mice striatum. Thus, our findings support the idea that the c-Abl/p73 pathway is involved in 6-hydroxydopamine degeneration and suggest that inhibition of its kinase activity might be used as a therapeutical drug in Parkinson's disease.

11.
Free Radic Res ; 55(5): 556-568, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34424800

RESUMO

Oxidative stress is involved in many pathological disturbs, such as neurodegenerative disorders. Eugenol (Eug) is a phenolic compound with antioxidant and neuroprotective activities. Then, this study was conducted to investigate the potential neuroprotective effects of Eug on oxidative stress model induced by 6-hydroxydopamine (6-OHDA) in rats. First, the in vivo oxidative stress model was performed by intrastriatal injection (int.) of 6-OHDA (21 µg), followed by the treatment of Eug (0.1, 1, and 10 mg/kg/7 d) per os (p.o.). On the 7 d, behavioral tests were performed. On the 8 d, all the animals were euthanasied and their cerebral areas were excised for neurochemical and transcriptional analyses. The results showed that the treatment with Eug promoted neuroprotective effects on in vivo through reducing of oxidative stress and modulation of genes related to antioxidant activity. Furthermore, animals treated with Eug demonstrated returning of behavioral performance and body weight gain to normal conditions. Thus, this study reports the neuroprotective effects of Eug against oxidative stress induced by 6-OHDA in rats.


Assuntos
Eugenol , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Eugenol/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Oxidopamina/toxicidade , Ratos
12.
Front Cell Dev Biol ; 9: 661656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239871

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of midbrain dopaminergic neurons (DaNs) of the substantia nigra pars compacta and the decrease of dopamine in the brain. Grafting DaN differentiated from embryonic stem cells (ESCs) has been proposed as an alternative therapy for current pharmacological treatments. Intrastriatal grafting of such DaNs differentiated from mouse or human ESCs improves motor performance, restores DA release, and suppresses dopamine receptor super-sensitivity. However, a low percentage of grafted neurons survive in the brain. Glial cell line-derived neurotrophic factor (GDNF) is a strong survival factor for DaNs. GDNF has proved to be neurotrophic for DaNs in vitro and in vivo, and induces axonal sprouting and maturation. Here, we engineered mouse ESCs to constitutively produce human GDNF, to analyze DaN differentiation and the possible neuroprotection by transgenic GDNF after toxic challenges in vitro, or after grafting differentiated DaNs into the striatum of Parkinsonian rats. GDNF overexpression throughout in vitro differentiation of mouse ESCs increases the proportion of midbrain DaNs. These transgenic cells were less sensitive than control cells to 6-hydroxydopamine in vitro. After grafting control or GDNF transgenic DaNs in hemi-Parkinsonian rats, we observed significant recoveries in both pharmacological and non-pharmacological behavioral tests, as well as increased striatal DA release, indicating that DaNs are functional in the brain. The graft volume, the number of surviving neurons, the number of DaNs present in the striatum, and the proportion of DaNs in the grafts were significantly higher in rats transplanted with GDNF-expressing cells, when compared to control cells. Interestingly, no morphological alterations in the brain of rats were found after grafting of GDNF-expressing cells. This approach is novel, because previous works have use co-grafting of DaNs with other cell types that express GDNF, or viral transduction in the host tissue before or after grafting of DaNs. In conclusion, GDNF production by mouse ESCs contributes to enhanced midbrain differentiation and permits a higher number of surviving DaNs after a 6-hydroxydopamine challenge in vitro, as well as post-grafting in the lesioned striatum. These GDNF-expressing ESCs can be useful to improve neuronal survival after transplantation.

13.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918172

RESUMO

Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
14.
Behav Brain Res ; 406: 113226, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33684423

RESUMO

Major depressive disorder (MDD) is one of the most prevalent forms of mental illness also affecting older adults. Recent evidence suggests a relationship between MDD and neurodegenerative diseases, including Parkinson's disease (PD). Individuals with PD have a predisposition to developing MDD, and both neurobiological conditions are associated with oxidative stress. Thus, we conducted this study to investigate depressive-like behavior and oxidative stress parameters using both animal models of PD and stress. Adult Wistar rats were subjected to chronic mild stress (CMS) protocol by 40 days and then it was used 6-hydroxydopamine (6-OHDA) as a model of PD, into the striatum. The experimental groups were: Control + Sham, Stress + Sham, Control+6-OHDA, and Stress+6-OHDA. Depressive like-behavior was evaluated by the forced swimming test (FST) and spontaneous locomotor activity by open-field test. Oxidative stress parameters were measured in the striatum, hippocampus, and prefrontal cortex (PFC). The results showed effects to increase immobility and decrease climbing times in the FST in Stress + Sham, Control+6-OHDA, and Stress+6-OHDA groups. The number of crossings and rearings were decreased in the Stress+6-OHDA group. The lipid peroxidation was increased in the PFC of Stress + Sham, and the hippocampus and striatum of Stress + Sham and Control+6-OHDA groups. Carbonyl protein levels increased in the PFC of Stress + Sham and striatum in Control+6-OHDA. Nitrite/Nitrate concentration was elevated in the PFC of Stress + Sham, in the hippocampus of Control+6-OHDA, the striatum of Stress + Sham, and Control+6-OHDA groups. Myeloperoxidase (MPO) activity was increased in the PFC and hippocampus of Stress + Sham and Control+6-OHDA groups. The activity of catalase decreased in the PFC of the Stress + Sham group. The activity of the superoxide dismutase (SOD) was decreased in the PFC of the Stress + Sham group, in the hippocampus of Stress + Sham and Control+6-OHDA groups, and the striatum of Control+6-OHDA group. These findings suggest that both stress and 6-OHDA induce depressive-like behavior and oxidative stress in the brain. The joining models have little evidence of the effects. Thus these findings suggest that other pathways are involved in the common point of the pathophysiology of PD and MDD.


Assuntos
Adrenérgicos/farmacologia , Comportamento Animal , Encéfalo , Transtorno Depressivo Maior , Estresse Oxidativo , Oxidopamina/farmacologia , Doença de Parkinson Secundária , Estresse Psicológico/complicações , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Transtorno Depressivo Maior/induzido quimicamente , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/etiologia , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar
15.
Purinergic Signal ; 17(2): 247-254, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548045

RESUMO

6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson's disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 µM) prevented the 6-OHDA-induced damage in striatal slices. As the exact GUO mechanism of action remains unknown, the aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A1R antagonist prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding A2AR, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A2AR agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results reinforce previous evidence for a putative interaction of GUO with A1R-A2AR heteromer as its molecular target and clearly indicate a dependence on adenosine receptors modulation to GUO protective effect.


Assuntos
Guanosina/farmacologia , Doenças Mitocondriais/prevenção & controle , Neostriado/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Xantinas/uso terapêutico
16.
Neurotoxicology ; 82: 89-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232743

RESUMO

We have previously shown that JM-20, a new chemical entity consisting of 1,5-benzodiazepine fused to a dihydropyridine moiety, protects against rotenone-induced neurotoxicity in an experimental model of Parkinson's disease (PD). The aim of this study was to investigate the effect of a novel hybrid molecule, named JM-20, in in vitro and in vivo models of PD induced by 6-hydroxydopamine (6-OHDA). PC-12 cells were exposed to 6-OHDA and treated with JM-20. Protection against mitochondrial damage induced by 6-OHDA was also investigated using isolated rat brain mitochondria. We found that JM-20 protected PC-12 cells against cytotoxicity induced by 6-OHDA and inhibited hydrogen peroxide generation, mitochondrial swelling and membrane potential dissipation. For in vivo experiments, adult male Wistar rats were lesioned in the substantia nigra pars compacta (SNpc) by 6-OHDA administration. JM-20 was orally administered (10, 20 or 40 mg/kg), intragastric via gavage, 24 h after surgery and daily for seven days. Treatment with JM-20 significantly reduced the percentage of motor asymmetry and increased vertical exploration. It improved the redox state of the SNpc and the striatal tissue of these animals. Also, JM-20 reduced glial fibrillary acidic protein overexpression and increased tyrosine hydroxylase-positive cell number, both in SNpc. Altogether, these results demonstrate that JM-20 is a potential neuroprotective agent against 6-OHDA-induced damage in both in vitro and in vivo models. The mechanism underlying JM-20 neuroprotection against 6-OHDA appears to be associated with the control of oxidative injury and mitochondrial impairment.


Assuntos
Antioxidantes/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Niacina/análogos & derivados , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Masculino , Mitocôndrias/metabolismo , Niacina/farmacologia , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células PC12/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Wistar
17.
Eur J Pharmacol ; 891: 173722, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33159932

RESUMO

Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 µg/µl), luzindole (LUZ, 5 µg/µl) or the MT2-selective receptor drug 4-P-PDOT (5 µg/µl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 µg/µl, 1 µg/µl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.


Assuntos
Anosmia/metabolismo , Comportamento Animal , Transtorno Depressivo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Bulbo Olfatório/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Anosmia/etiologia , Anosmia/fisiopatologia , Anosmia/psicologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/etiologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Melatonina/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiopatologia , Percepção Olfatória/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/psicologia , Ratos Wistar , Receptor MT2 de Melatonina/efeitos dos fármacos , Transdução de Sinais , Olfato/efeitos dos fármacos , Natação , Tetra-Hidronaftalenos/farmacologia , Triptaminas/farmacologia
18.
Neurosci Bull ; 36(11): 1299-1314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33026587

RESUMO

Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.


Assuntos
Gânglios da Base/fisiopatologia , Sinalização do Cálcio , Doença de Huntington , Doença de Parkinson , Receptores Purinérgicos/metabolismo , Gânglios da Base/metabolismo , Neurônios GABAérgicos , Globo Pálido/metabolismo , Humanos , Doença de Huntington/fisiopatologia , Doença de Parkinson/fisiopatologia , Receptor A2A de Adenosina , Receptores de Dopamina D2/metabolismo , Receptores de Glutamato , Receptores Purinérgicos P2X7
19.
CNS Neurol Disord Drug Targets ; 19(2): 148-162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32303175

RESUMO

BACKGROUND: Parkinson's Disease (PD) is a common neurodegenerative disorder affecting the dopaminergic (DAergic) system. Replacement therapy is a promising alternative aimed at reconstructing the cytoarchitecture of affected brain regions in PD. Experimental approaches, such as the replacement of DAergic neurons with cells obtained from the Enteric Nervous System (ENS) has yet to be explored. OBJECTIVE: To establish and characterize a cell replacement strategy with ENS Cells (ENSCs) in a PD model in rats. METHODS: Since ENSCs can develop mature DAergic phenotypes, here we cultured undifferentiated cells from the myenteric plexus of newborn rats, establishing that they exhibit multipotential characteristics. These cells were characterized and further implanted in the Substantia nigra pars compacta (SNpc) of adult rats previously lesioned by a retrograde degenerative model produced by intrastriatal injection of 6-Hydroxydopamine (6-OHDA). DAergic markers were assessed in implants to validate their viability and possible differentiation once implanted. RESULTS: Cell cultures were viable, exhibited stem cell features and remained partially undifferentiated until the time of implant. The retrograde lesion induced by 6-OHDA produced DAergic denervation, reducing the number of fibers and cells in the SNpc. Implantation of ENSCs in the SNpc of 6-OHDAlesioned rats was tracked after 5 and 10 days post-implant. During that time, the implant increased selective neuronal and DAergic markers, Including Microtubule-Associated Protein 2 (MAP-2), Dopamine Transporter (DAT), and Tyrosine Hydroxylase (TH). CONCLUSION: Our novel results suggest that ENSCs possess a differentiating, proliferative and restorative potential that may offer therapeutic modalities to attenuate neurodegenerative events with the inherent demise of DAergic neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Sistema Nervoso Entérico , Masculino , Oxidopamina/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Inflammopharmacology ; 28(3): 737-748, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31617123

RESUMO

Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system affecting approximately 30 million individuals worldwide. Mitochondrial dysfunction and oxidative stress have also been implicated in causing neurodegeneration. As life expectancy is increasing, neurodegenerative disorders are becoming a major social issue. None of the drugs currently available for treatment are capable of healing the patient. This means that new molecules should be explored. Plants have been used for treatment of countless medical conditions and extensive research is being carried out on species of the Myrtaceae family, widely used in traditional medicine. To date, Myrciaria plinioides D. Legrand has not been studied for its therapeutic use. To evaluate the neuroprotective effect of aqueous and ethanol extracts of this plant, we investigated the protective effects in human neuroblastoma cells (SH-SY5Y). High-performance liquid chromatography fingerprinting of extracts revealed the presence of phenolic compounds and flavonoids. Extracts showed antioxidant activity in the ORAC, DPPH, FRAP and GAE methods. Ethanol extract presented a strong inhibitory activity toward p38 and JNK3 MAPKs and AChE activity and also toward TNF-α release in human whole blood. None of the extracts significantly affected cell viability; the ethanol extract, however, reversed 6-OHDA-induced toxicity. Particularly the ethanol extract suggests neuroprotective effects by preventing membrane depolarization and by significantly decreasing H2O2 production and caspase-3 activity. The present results indicate that the ethanol extract protects SH-SY5Y cells against oxidative damage and apoptosis, as shown by the antioxidative activity of the extract as well as by the inhibition of important proteins such as caspase-3, p38 and JNK3 and the cytokine TNF-α.


Assuntos
Myrtaceae/química , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA