Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(2): 63, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670263

RESUMO

The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode's polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 µmol L-1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.


Assuntos
Terapia a Laser , Nanoestruturas , Humanos , Dióxido de Carbono , Nanoestruturas/química , Oxirredução , Impressão Tridimensional
2.
Anal Chim Acta ; 1142: 135-142, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280691

RESUMO

The variation in biomarkers levels, such as L-methionine, can be an indicator of health problems or diseases, such as metabolism, neuropsychiatric disorders, or some virus infections. Thus, the development of accurate sensors, with low-cost and rapid response has been gaining increasing importance and attractiveness for the early diagnosis of diseases. In this regard, we have proposed a method for L-methionine electrochemical detection using a low-cost and simple arrangement of 3D-printed electrodes (working, reference, and auxiliary electrodes) based on polylactic acid/graphene filament (PLA-G), in which all electrodes were printed. The working electrode was chemically and electrochemically treated, showing a high electroactive area, with graphene edge plans exposure and better electron transfer when compared to the untreated electrode. An excellent analytical performance was obtained with a sensitivity of 0.176 µAL µmol-1, a linear dynamic range of 5.0 µmol L-1- 3000 µmol L-1 and limit of detection of 1.39 µmol L-1. The proposed device was successfully applied for L-methionine detection in spiked serum samples, showing satisfactory recovery values. This indicates the potentiality of the proposed arrangement of electrodes for the L-methionine detection in biological samples at different concentration levels.


Assuntos
Técnicas Eletroquímicas , Grafite , Eletrodos , Metionina , Impressão Tridimensional
3.
Anal Chim Acta ; 1132: 10-19, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980099

RESUMO

The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 µL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 µmol L-1, linear range from 5 to 500 µmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 µmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA