Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877991

RESUMO

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


Assuntos
Metaboloma , Metabolômica , Fósforo/metabolismo , Floresta Úmida , Árvores/metabolismo , Guiana Francesa , Folhas de Planta/metabolismo , Especificidade da Espécie
2.
Sci Total Environ ; 712: 136405, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931198

RESUMO

Understanding the role of N-fixing leguminous trees for phosphorus (P) cycling in highly weathered tropical soils is relevant for the conservation of natural forests as well as the sustainable management of agroforests and forest plantations with low P input in the Brazilian Atlantic Forest region. We hypothesized that N-fixing leguminous trees can increase the availability of soil P by exploiting different P sources without causing a depletion of soil organic P due to efficient biogeochemical cycling, but empirical evidence remains scarce. For this purpose, 31P nuclear magnetic resonance spectroscopy (31P NMR) was used for quantifying soil P forms and the Hedley sequential extraction to determine soil P fractions. The studied sites were forestry systems with leguminous trees: mixed forest plantations with different proportions of fast-growing N-fixing leguminous trees; pure plantations, and agroforestry systems with leguminous trees. The results show that all N-fixing leguminous trees and N mineral fertilization positively affected the concentrations of available soil P in relation to the control treatments. There were increases of all P fractions through cycling in all forest sites. 31P NMR spectra clearly identified and quantified that a large amount of phosphomonoesters followed by phosphodiesters in the form of DNA, as well as high reserves of Pi species (ortho-P and pyrophosphate) in the first eleven years of growth at pure plantations, mixed plantations or agroforests. The relations between both ortho-P and DNA with the resin-Pi, NaHCO3-Pi and NaOH-Pi fractions suggest that both analysis methods provide complementary information about the soil P transformations. Thus, the paper highlights the importance of the use of different N-fixing leguminous tree species under different environmental conditions, production systems and management practices for recovering heavily degraded areas, which may be a suitable strategy through efficient management of P in highly weathered tropical soils in the Brazilian Atlantic Forest biome.


Assuntos
Fabaceae , Solo , Árvores , Brasil , Florestas , Nitrogênio , Fósforo , Clima Tropical
3.
Front Chem ; 6: 669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693279

RESUMO

An efficient strategy for the degradation of organophosphate pesticide Diazinon was investigated. In this work, ionic liquids, bio-based solvents, and two conventional organic solvents were used as reaction media. Kinetics studies by means of half-life (t1/2,h) were followed by 31P NMR and the products analyzed by GC-MS, HPLC-MS and NMR techniques. These results have shown that t1/2 values in ionic liquids were the lowest and also they were able to activate two electrophilic centers in Diazinon, whilst degradation in bio-based solvents occurred slowly by only an aromatic pathway. In addition, a study to estimate the influence of green activation techniques was carried out by using Ultrasound irradiation and Microwave heating in combination with greener solvents and two conventional organic solvents. Under Microwave heating, faster degradation than under ultrasound irradiation was found. Finally, considering both families of solvent used here and their behavior under green activation techniques, we propose that the more efficient way for degradation of Diazinon with piperidine is by microwave heating using ionic liquids as solvents.

4.
Biol. Res ; 43(2): 243-250, 2010. ilus
Artigo em Inglês | LILACS | ID: lil-567539

RESUMO

The effect of extremely low frequency magnetic felds (50 Hz, 0.5 mT) - ELF-MF, on phosphate metabolism has been studied in the isolated ganglions of the garden snail Helix pomatia, after 7 and 16 days of snail exposure to ELF-MF. The infuence of ELF-MF on the level of phosphate compounds and intracellular pH was monitored by 31P NMR spectroscopy. Furthermore, the activity of enzymes involved in phosphate turnover, total ATPases, Na+/K+-ATPase and acid phosphatase has been measured. The exposure of snails to the ELF-MF for the period of 7 days shifted intracellular pH toward more alkaline conditions, and increased the activity of investigated enzymes. Prolonged exposure to the ELF-MF for the period of 16 days caused a decrease of PCr and ATP levels and decreased enzyme activity, compared to the 7-day treatment group. Our results can be explained in terms of: 1. increase in phosphate turnover by exposure to the ELF-MF for the period of 7 days, and 2. adaptation of phosphate metabolism in the nervous system of snails to prolonged ELF-MF exposure.


Assuntos
Animais , Campos Eletromagnéticos , Caracois Helix/metabolismo , Magnetismo , Sistema Nervoso/metabolismo , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA