Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 13: 100228, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35128385

RESUMO

Peppers of the Capsicum genus have a rich nutritional composition and are widely consumed worldwide. Thus, they find numerous applications in the food, pharmaceutical and cosmetic industries. One commercial application is oleoresin production, a nonpolar fraction rich in bioactive compounds, including capsaicinoids and carotenoids. Among the technologies for pepper processing, special attention is given to supercritical fluid technologies, such as supercritical fluid extraction (SFE) with pure solvents and CO2 plus modifiers, and SFE assisted by ultrasound. Supercritical fluid-based processes present advantages over the classical extraction techniques like using less solvents, short extraction times, specificity and scalability. In this review, we present a brief overview of the nutritional aspects of peppers, followed by studies that apply supercritical fluid technologies to produce extracts and concentrate bioactives, besides oleoresin encapsulation. Furthermore, we present related phase equilibrium, cost estimation, and the gaps and needs for the full use of peppers from a sustainable perspective.

2.
Food Chem ; 362: 130159, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34167065

RESUMO

The sequential fractionation by supercritical-CO2 (SC-CO2) was applied to obtain fractions enriched in bioactive compounds of pomegranate peel, and we investigated if pomegranate peel extract and fractions would be effective to inhibit lipid and protein oxidation, and discolouration of bluefish patties stored at 4 °C for 9 days, after UV-C irradiation. The non-fractionated SC-CO2 extract from pomegranate peel was rich in phenolic compounds, mainly ellagitannins, besides, it possessed lipophilic compounds such as tocopherols and ß-carotene. These compounds were successfully separated by the fractionation protocols, in a lipid fraction concentrated in lipophilic compounds, and one or two fractions enriched with phenolic compounds, especially ellagitannins. The lipid fraction and the high phenolics fraction from pomegranate peel were then as effective as the synthetic antioxidant BHT in avoiding bluefish patties oxidation during refrigerated storage. Our data indicates that pomegranate peel fractions could be used to replace a synthetic antioxidant in fish meat.


Assuntos
Antioxidantes/química , Fracionamento Químico/métodos , Produtos Pesqueiros , Perciformes , Punica granatum/química , Animais , Antioxidantes/análise , Dióxido de Carbono/química , Cor , Proteínas de Peixes da Dieta/química , Conservação de Alimentos/métodos , Frutas/química , Taninos Hidrolisáveis/análise , Lipídeos/química , Oxirredução , Fenóis/análise , Extratos Vegetais/química , Tocoferóis/análise , Raios Ultravioleta
3.
Food Chem ; 343: 128512, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223288

RESUMO

We present the chemical composition, quality parameters and antioxidant capacity of pumpkin seed oils (PSO) from Cucurbita pepo, Cucurbita maxima, and Cucurbita moschata cultivated in Brazil. In addition, PSO nanoemulsions (nanopepo, nanomax and nanomosc) were developed and their physical stabilities were assessed under long-term storage at two temperatures. Among the PSO, C. pepo presented the highest contents of polyunsaturated fatty acids, total carotenoids, and chlorophylls, but the lowest oxidative stability. Conversely, C. maxima PSO showed highest oxidative stability and total tocopherol content but the lowest chlorophyll content. Nanomax and nanopepo were more stable to droplet growth at 4 °C, while nanomosc was more stable at 25 °C. Nanopepo was the most stable formulation after the heating-cooling cycles, whereas nanomax was the most stable under centrifugation regardless the temperature. Overall, all nanoemulsions presented droplet diameter lower than 200 nm and ζ-potential approaching -30 mV until the end of storage.


Assuntos
Cucurbita/química , Emulsões/química , Óleos de Plantas/química , Antioxidantes/química , Brasil , Carotenoides/análise , Ácidos Graxos Insaturados/análise , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Nanoestruturas/química , Oxirredução , Sementes/química , Temperatura , Tocoferóis/análise
4.
Food Res Int ; 138(Pt A): 109690, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292959

RESUMO

The Arecaceae family is widely distributed and comprises about 2600 species, in which 48 of them are native to Brazil and occurs in transition biomes between the Amazon, Cerrado and Caatinga. In addition to being used as a source of food and subsistence, they are also rich in lipophilic bioactive compounds, mainly carotenoids, polyunsaturated fatty acids, tocopherols and vitamin A. Moreover, they have considerable content of phenolic compounds, fibers and minerals. Therefore, the objective of this review is to present the physical-chemical and nutritional aspects, the main bioactive compounds, the biological properties and the innovative potential of four Brazilian palm-tree fruits of the Arecaceae family. Due to the presence of bioactive compounds, these fruits have the potential to promote health and can be used to prevent chronic non-communicable diseases, such as obesity, type 2 diabetes and others. Furthermore, these raw materials and their by-products can be used in the development of new food, chemical, pharmaceutical and cosmetic products. To ensure better use of these crops, promote their commercial value, benefit family farming and contribute to the country's sustainable development, it is necessary to implement new cultivation, post-harvest and processing techniques. Investing in research to publicize their potential is equally important, mainly of the ones still little explored, such as the buritirana.


Assuntos
Arecaceae , Diabetes Mellitus Tipo 2 , Brasil , Frutas/química , Fenóis/análise
5.
Food Chem ; 289: 453-460, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30955636

RESUMO

Carrot residues were upgraded as pectin-enriched fractions (PEFs) useful for functional food formulation due to co-extracted antioxidants (α- and ß-carotenes, lutein, α-tocopherol), and gelling effect. High power ultrasound (US)-enzyme assisted extraction was applied for efficiency and sustainability. Carrot powder (CP) in citrate-buffer (pH 5.20) was submitted to US-pretreatment (12.27 W/cm2: 20 kHz, 80% amplitude, 20 min) and a subsequent digestion (5 h-40 °C) without or with hemicellulase or cellulase. US-hemicellulase led to the highest PEF yield (27.1%), and extracted almost the whole pectin content of CP. US-pretreatment increased the extraction yield of all PEFs, but the existence of an additional positive effect of the following step depended on the enzyme used. PEFs contained 40-47% of UA with low DM (24-49.9%), and co-extracted antioxidants. US decreased the antioxidant contents, DM, and molecular weight, but allowed obtaining calcium crosslinked true gels, also with higher elastic modulus than non-US-extracted PEFs, being promising as food additives.


Assuntos
Antioxidantes/isolamento & purificação , Daucus carota/química , Pectinas/isolamento & purificação , Carotenoides/isolamento & purificação , Celulase/metabolismo , Manipulação de Alimentos/métodos , Luteína/isolamento & purificação , Raízes de Plantas/química , Ultrassom , alfa-Tocoferol/isolamento & purificação
6.
Food Chem ; 287: 295-302, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30857703

RESUMO

Among the nutritional properties of microalgae, this study is focused in the presence of carotenoid esters in prokaryote microalgae, an event that has not been shown so far. Three carotenoid esters that accumulate in non-stressful culture conditions are identified in Aphanotece microscopica Nägeli and Phormidum autumnale Gomont, what may provide an extra value to the quality attributes of the carotenoid profile in cyanobacteria as functional foods. In addition, new data on the carotenoid characterization added quality criteria for the identification of the esterified metabolites, enabling the monitoring of these food components. Specifically, the metabolomic approach applied to the food composition analysis, has allowed to differentiate between the esters of zeinoxanthin and ß-cryptoxanthin, which were undifferentiated to date during the MS characterization of carotenoids in other food sources. We propose a new qualifier product ion specific for zeinoxanthin ester, which it is not present in the MS2 spectrum of ß-cryptoxanthin esters.


Assuntos
Carotenoides/química , Cianobactérias/química , beta-Criptoxantina/análise , beta-Criptoxantina/química , beta-Criptoxantina/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Criptoxantinas/análise , Criptoxantinas/química , Criptoxantinas/metabolismo , Esterificação , Ésteres/química , Análise de Alimentos , Espectrometria de Massas em Tandem
7.
Food Chem ; 187: 53-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976997

RESUMO

We evaluated the physicochemical properties and oxidative stability of the oil extracted from the seeds of Moringa oleifera during its refining process. Refining is accomplished in three stages: neutralization, degumming, and bleaching. Four samples were analyzed, corresponding to each step of the processed and crude oil. Increases in the density, viscosity, saponification value and oxidation of the oil were detected during the refining, while the peroxide value and carotenoid content diminished. Moreover, the refractive index and iodine content were stable throughout the refining. Nine fatty acids were detected in all four samples, and there were no significant differences in their composition. Oleic acid was found in the largest amount, followed by palmitic acid and behenic acid. The crude, neutralized, and degummed oils showed high primary oxidation stability, while the bleached oil had a low incidence of secondary oxidation.


Assuntos
Manipulação de Alimentos/métodos , Moringa oleifera/química , Óleos de Plantas/química , Sementes/química , Carotenoides/análise , Fenômenos Químicos , Ácidos Graxos/análise , Ácido Oleico/análise , Oxirredução , Ácido Palmítico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA