Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Environ Res ; 199: 106627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968803

RESUMO

DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies. Dietary analysis reveals a preference for epipelagic fish, cephalopods, and small crustaceans, with variations between colonies and breeding stages. Isotopic values (δ15N and δ13C) align with DNA metabarcoding results, with wider niches during incubation stages. Differences in diet are linked to environmental conditions and trophic plasticity among breeding stages, influenced by changing physiological requirements and prey availability. Variations in dietary profiles reflect contrasting environmental conditions affecting local prey availability.


Assuntos
Código de Barras de DNA Taxonômico , Cadeia Alimentar , Animais , Isótopos de Carbono/análise , Dieta , Isótopos de Nitrogênio/análise , Aves/fisiologia , México
2.
Food Chem ; 449: 139194, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574525

RESUMO

Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.


Assuntos
Ácidos Graxos , Azeite de Oliva , Uruguai , Argentina , Ácidos Graxos/química , Ácidos Graxos/análise , Azeite de Oliva/química , Análise Discriminante , Isótopos de Carbono/análise
3.
Mar Environ Res ; 198: 106517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657369

RESUMO

Estuarine mangroves are often considered nurseries for the Atlantic Goliath grouper juveniles. Yet, the contributions of different estuarine primary producers and habitats as sources of organic matter during early ontogenetic development remain unclear. Given the species' critically endangered status and protection in Brazil, obtaining biological samples from recently settled recruits in estuaries is challenging. In this study, we leveraged a local partnership with fishers and used stable isotope (C and N) profiles from the eye lenses of stranded individuals or incidentally caught by fishery to reconstruct the trophic and habitat changes of small juveniles. The eye lens grows by the apposition of protein-rich layers. Once these layers are formed, they become inert, allowing to make inferences on the trophic ecology and habitat use along the development of the individual until its capture. We used correlations between fish size and the entire eye lens size, along with estuarine baselines, to reconstruct the fish size and trophic positions for each of the lens layers obtained. We then used dominant primary producers and basal sources from mangrove sheltered, exposed estuarine and marine habitats to construct an ontogenetic model of trophic and habitat support changes since maternal origins. Our model revealed marine support before the juveniles reached 25 mm (standard length), followed by a rapid increase in reliance on mangrove sheltered sources, coinciding with the expected size at settlement. After reaching 60 mm, individuals began to show variability. Some remained primarily supported by the mangrove sheltered area, while others shifted to rely more on the exposed estuarine area around 150 mm. Our findings indicate that while mangroves are critical for settlement, as Goliath grouper juveniles grow, they can utilize organic matter produced throughout the estuary. This underscores the need for conservation strategies that focus on seascape connectivity, as protecting just one discrete habitat may not be sufficient to preserve this endangered species and safeguard its ecosystem functions.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Cristalino , Animais , Cristalino/crescimento & desenvolvimento , Brasil , Estuários , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Bass/fisiologia , Bass/crescimento & desenvolvimento , Cadeia Alimentar , Monitoramento Ambiental
4.
Environ Monit Assess ; 196(1): 102, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158434

RESUMO

Planted forest soils can have great potential for CO2-C sequestration, mainly due to belowground C inputs, which impact deep soil C (DSC) accumulation. However, there are still gaps in understanding the CO2 emission dynamics in eucalypt plantations. Therefore, we used isotopic techniques to investigate the dynamics of the soil surface CO2-C flux and CO2-C concentration with depth for a eucalypt plantation influenced by different C inputs (above- and belowground). The gas evaluations were carried in depth the root to valuation of root priming effect (RPE) was calculated. In addition, measurements of the plant (C-fine root and C-litterfall) and soil (total organic carbon - TOC, total nitrogen - TN, soil moisture - SM, and soil temperature - ST) were performed. After planting the eucalypt trees, there was an increase in the soil surface CO2-C flux with plant growth. Root growth contributed greatly to the soil surface CO2-C flux, promoting greater surface RPE over time. In comparison to the other factors, SM had a greater influence on litterfall decomposition and root respiration. It was not possible to detect losses in TOC and TN in the different soil layers for the 31-month-old eucalypt. However, the 40-month-old eucalypt showed a positive RPE with depth, indicating possible replacement of DSC ("old C") by rhizodeposition-C ("new C") in the soil. Thus, in eucalyptus plantations, aboveground plant growth influences CO2 emissions on the soil surface, while root growth and activity influence C in deeper soil layers. This information indicates the need for future changes in forest management, with a view to reducing CO2 emissions.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Monitoramento Ambiental , Florestas , Árvores , Carbono/análise
5.
Mar Environ Res ; 192: 106234, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871468

RESUMO

Different tissues are used for stable isotope analysis in cetacean investigations. However, variation in the isotopic composition of tissues with different turnover rates has been reported for cetaceans. To better understand stable carbon and nitrogen isotopes (δ13C and δ15N) in skin compared to other tissues, this study assessed the isotopic variation among the liver, muscle, and skin of Guiana dolphins (Sotalia guianensis), as well as the influence of sex on these variations. No differences were found in δ13C among male tissues, but females showed lower values in the liver compared to muscle and skin. Differences in δ15N were observed among all tissues, with different variation patterns for males and females. Four females were distinguished from males and other females by their 13C depletion in all tissues and δ15N variation pattern. We conclude that skin and muscle may be equivalent in δ13C values for Guiana dolphins. The multiple-tissue analysis brings new insights into their feeding ecology and provides background for stable isotope analysis using non-destructive sampling techniques in small cetaceans.


Assuntos
Golfinhos , Animais , Feminino , Masculino , Golfinhos/fisiologia , Carbono , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Ecologia
6.
Environ Sci Technol ; 57(40): 14983-14993, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774105

RESUMO

Dissolved organic matter (DOM) contributes to forest C cycling. We assessed temporal variability, sources, and transformations of DOM during four years in a tropical montane forest with the help of stable C isotope ratios (δ13C values). We measured δ13C values of DOM in rainfall (RF), throughfall (TF), stemflow (SF), litter leachate (LL), soil solutions at the 0.15 and 0.30 m depths (SS15, SS30), and streamflow (ST) with TOC-IRMS. The δ13C values of DOM did not vary seasonally. We detected an event with a high δ13C value likely attributable to black carbon from local pasture fires. The mean δ13C values of DOM outside the event decreased in the order, RF (-26.0 ± 1.3‰) > TF (-28.7 ± 0.3‰) > SF (-29.2 ± 0.2‰) > LL (-29.6 ± 0.2‰) because of increasing leaching of C-isotopically light compounds. The higher δ13C values of DOM in SS15 (-27.8 ± 1.0‰), SS30 (-27.6 ± 1.1‰), and ST (-27.9 ± 1.1‰) than in the above-ground solutions suggested that roots and root exudates are major belowground DOM sources. Although in DOM the C/N ratios correlated with the δ13C values when all solutions were considered, this was not the case for SS15, SS30, and ST alone. Thus, the δ13C values of DOM provide an additional tool to assess the sources and turnover of DOM.

7.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459811

RESUMO

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Assuntos
Gases de Efeito Estufa , Solo , Ecossistema , Brasil , Sequestro de Carbono , Dióxido de Carbono/análise , Esterco , Carbono/análise , Florestas , Árvores
8.
Environ Sci Pollut Res Int ; 30(21): 60036-60049, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017840

RESUMO

This study investigates spatio-temporal variations of PM10 mass concentrations and associated metal(oid)s, δ13C carbon isotope ratios, polycyclic aromatic hydrocarbons (PAHs), total organic carbon (TOC) and equivalent black carbon (eBC) concentrations over a half year period (from March 2017 to October 2017) in two residential areas of Medellín (MED-1 and MED-2) and Itagüí municipality (ITA-1 and ITA-2) at a tropical narrow valley (Aburrá Valley, Colombia), where few data are available. A total of 104 samples were analysed by using validated analytical methodologies, providing valuable data for PM10 chemical characterisation. Metal(oid)s concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion, and PAHs concentrations were measured by Gas Chromatography-Mass Spectrometry (GC-MS) after Pressurised Hot Water Extraction (PHWE) and Membrane Assisted Solvent Extraction (MASE). Mean PM10 mass concentration ranged from 37.0 µg m-3 to 45.7 µg m-3 in ITA-2 and MED-2 sites, respectively. Al, Ca, Mg and Na (from 6249 ng m-3 for Mg at MED-1 site to 10,506 ng m-3 for Ca at MED-2 site) were the major elements in PM10 samples, whilst As, Be, Bi, Co, Cs, Li, Ni, Sb, Se, Tl and V were found at trace levels (< 5.4 ng m-3). Benzo[g,h,i] perylene (BghiP), benzo[b + j]fluoranthene (BbjF) and indene(1,2,3-c,d)pyrene (IcdP) were the most profuse PAHs in PM10 samples, with average concentrations of 0.82-0.86, 0.60-0.78 and 0.47-0.58 ng m-3, respectively. Results observed in the four sampling sites showed a similar dispersion pattern of pollutants, with temporal fluctuations which seems to be associated to the meteorology of the valley. A PM source apportionment study were carried out by using the positive matrix factorization (PMF) model, pointing to re-suspended dust, combustion processes, quarry activity and secondary aerosols as PM10 sources in the study area. Among them, combustion was the major PM10 contribution (accounting from 32.1 to 32.9% in ITA-1 and ITA-2, respectively), followed by secondary aerosols (accounting for 13.2% and 23.3% ITA-1 and MED-1, respectively). Finally, a moderate carcinogenic risk was observed for PM10-bound PAHs exposure via inhalation, whereas significant carcinogenic risk was estimated for carcinogenic metal(oid)s exposure in the area during the sampling period.


Assuntos
Poluição do Ar , Exposição Ambiental , Material Particulado , Poluentes Atmosféricos/análise , Carbono/análise , Colômbia , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Humanos
9.
Mar Pollut Bull ; 187: 114526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621302

RESUMO

Mercury (Hg) is a contaminant of global concern due to its damaging toxicological effects on organisms. For the vulnerable Dusky Grouper (Epinephelus marginatus) off the coast of Brazil, we investigated: i) spatial patterns in muscle tissue total mercury (THg) contamination; ii) the relationship between muscle THg concentrations and total length iii) the relationship between muscle THg and stable isotopes; and iv) THg concentrations among muscle, liver, and ovary tissues. Out of 134 fish sampled, 21.8 % were higher than 0.5 mg/kg wet weight (above the safe limit for human consumption). THg concentrations increased toward lower latitudes, but an opposite pattern was observed for δ13C and δ15N with decreased values toward lower latitudes. There were significant differences in THg concentration among the three tissues. Results of Hg concentrations are useful for understanding the potential adverse effects on the health of this vulnerable species and to serve as a guide to human consumers.


Assuntos
Bass , Mercúrio , Poluentes Químicos da Água , Animais , Humanos , Feminino , Mercúrio/análise , Brasil , Poluentes Químicos da Água/análise , Peixes , Isótopos/análise , Análise Espacial , Monitoramento Ambiental
10.
Mar Environ Res ; 181: 105737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075155

RESUMO

Stable isotope (SI) analysis is a standard tool to study marine food webs, usually based on the measurement of a few individuals from a small list of subjectively pre-defined species. The main objective of this study was to find out which species are significantly associated with the temporal variability of the SI composition of zooplankton in a tropical marine ecosystem. We investigated this by means of a novel species-biomass-isotopes-mixture (SBIM) approach that uses a relative biomass matrix to explain the SI signature of the zooplankton community. Furthermore, SBIM was applied to detect key taxa that can be considered bioindicators for important descriptors of ecosystem state (e.g., oligotrophy, carbon sources, mean trophic level). Plankton samples (64 µm mesh size) were obtained in Tamandaré Bay (northeastern Brazil) from June 2013 to August 2019. One aliquot of each sample was taken for stable isotope measurements and one for taxonomic identification and estimation of size and relative biomass. Total zooplankton biomass differed significantly between years, seasons and stations. Total zooplankton δ13C values ranged from -21.0 to -18.2‰ (mean ± standard deviation: -19.7 ± 0.7‰ in the dry season, and -19.4 ± 0.8‰ in the rainy season). Total zooplankton δ15N values ranged from 3.8 to 9.0‰ (7.0 ± 1.0‰ in the dry season, and 6.5 ± 1.2‰ rainy season). Total zooplankton C/N ratios ranged from 3.5 to 5.0 (4.2 ± 0.4 in the dry season and 4.2 ± 0.3 in the rainy season). The sparsely abundant and relatively large-sized copepod Pseudodiaptomus acutus was the most important species for explaining the variability in δ15N (22% of the total variability). Relative biomass (%) of P. acutus showed a strong positive correlation with δ15N, indicating a high trophic level (TL). Our results highlight the importance of less abundant taxa for marine food webs. Small-sized invertebrate larvae were negatively correlated with δ15N, indicating a TL below average. The copepod Dioithona oculata was the most important organism in explaining the δ13C of zooplankton (17.7% of the total variability, positive correlation with δ13C), indicating possible selective use of a13C-enriched food source (e.g., diatoms) by this cyclopoid copepod. Oithona spp. juveniles showed a negative relationship with zooplankton C/N ratio, which can be indicators of an oligotrophic ecosystem state and lipid-poor zooplankton. The tintinnid F. ehrenbergii showed a positive correlation with C/N, being an indicator for turbid "green waters'', during the rainy season, when the ecosystem was in a eutrophic state, with high lipid contents in the zooplankton community. The proposed SBIM approach opens up a novel pathway to understanding the factors and species that shape the temporal variability of food webs.


Assuntos
Copépodes , Ecossistema , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Lipídeos , Isótopos de Nitrogênio/análise , Fatores de Tempo , Zooplâncton/metabolismo
11.
Sci Total Environ ; 833: 155298, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35430183

RESUMO

This paper aimed to quantify the C and N stocks and the natural abundancy of 13C (δ13C) in organic matter fractions of soil, as well as soil labile C, in a long-term experiment (1997-2019) on silvopastoral systems (SSP) with low and high tree diversity in the Mata Atlântica biome. Disturbed and undisturbed soil samples were collected in transects that were perpendicular to the tree rows every five meters (0, 5, 10, and 15 m of distance), at depths of: 0.0-0.10, 0.10-0.30. 0.30-0.60, 0.60-1.0 m. Litterfall, root density, total organic C and N content, δ13C values for particulate organic matter (POM) fractions as well as mineral-associated organic matter (MAOM) and soil labile C, whilst stocks were calculated afterwards. Litterfall production was higher in the high diversity SSP for all distances, except for 5 m from the tree row. In contrast to litterfall, higher root density was observed for the longest tree distances (15 m) in the low diversity system. The high tree diversity SSP increased TOC stocks in the top soil layer (0.0-0.10 m, distances of 0 and 10 m) only and C-MAOM stocks in the surface (0.0-0.10 m, 10 m distance) and subsurface (0.10-0.30 m, 0 m distance). In contrast, total N stocks or stocks associated with MAOM and POM were higher in the high tree diversity system. The increases were of 37, 36 and 63%, respectively, for total N, N-MAOM, and N-POM up to 1 m depth. The smallest δ13C values found close to the tree row (0 and 5 m distances), especially in the high diversity system, indicate the influence organic residue from leguminous tree species, whilst the C4 grass held the highest contribution at the 15 m distance, also in the high diversity system. In general, the high diversity tree silvopastoral system has shown potential at storing most C in the 0.0-0.10 m soil layers only and N up to 1 m depth. Results showed very little shift in total C stocks, but the increased N stocks with the inclusion the legumes trees, which is reflected in a lower C:N ratio of the SOM. The silvopastoral system containing signal grass both legumes trees can be looked at as a viable strategy towards sustaining existing soil C stocks, whilst increasing N stocks and SOM quality.


Assuntos
Fabaceae , Árvores , Carbono , Ecossistema , Minerais , Solo/química
12.
Environ Monit Assess ; 193(10): 633, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490544

RESUMO

Diagnostic ratios and compound-specific isotopic analysis (CSIA) are two tools that can help identify and differentiate the petrogenic and biogenic sources of hydrocarbons found in environmental samples. The present study aims to evaluate the concentration and type of n-alkanes and isoprenoids found in the oligotrophic waters of the Gulf of Mexico (n = 14), and through the typical diagnostic ratios reported for n-alkanes and its carbon isotopic composition (δ13C) to establish and differentiate the possible source of the hydrocarbons. Additionally, crude oil samples (n = 10) extracted in the Gulf of Mexico were evaluated by CSIA as a possible source of hydrocarbons to the study area. We found that the CSIA of δ13C for n-alkanes (n-C11 to n-C30) and isoprenoids (pristane and phytane) found in the surface water samples varied from - 25.55 to - 37.59‰ and from - 23.78 to - 33.97‰ in the crude oil samples, values which are more related to petrogenic sources. An analysis of the δ13C for pristane vs. phytane suggests that only three surface water samples show an origin in common that those observed in crude oils of the Gulf of Mexico. A low incidence of odd- and even-numbered n-alkanes higher than n-C25 in the water samples indicate low to negligible presence of terrigenous sources into the area, which was supported by the carbon isotopic composition of the individual n-alkanes.


Assuntos
Petróleo , Poluentes Químicos da Água , Alcanos/análise , Isótopos de Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos , Golfo do México , Petróleo/análise , Terpenos , Poluentes Químicos da Água/análise
13.
Mar Pollut Bull ; 166: 112219, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690084

RESUMO

Mangrove environments are important for maintaining biodiversity and carbon cycling. However, these systems are being degraded at alarming rates around the world, particularly in rapidly developing regions. Here, we examine a sediment profile from a mangrove forest near a large port complex at Suape, northeast Brazil, in order to assess the impact of rapid urbanization and industrialization. We find that total organic carbon (TOC) and total nitrogen (TN) accumulation rates have increased in the estuary since the 1980's, directly related to rapid urban development. The TN and heavy δ15N values in the sediment column suggest increasing anthropogenic influences. In contrast, heavy metal fluxes did not increase during these transitions. The increase in TOC and TN accumulation rates during the past four decades highlight the significant role mangrove areas play as sinks for anthropogenically enhanced nutrients in poorly-understood tropical areas.


Assuntos
Carbono , Sedimentos Geológicos , Brasil , Carbono/análise , Monitoramento Ambiental , Nutrientes , Áreas Alagadas
14.
PeerJ ; 9: e10958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717694

RESUMO

In this study, we evaluated the interactive effects of temperature, pH, and nutrients on photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A significant interaction among these factors on gross photosynthesis (Pgross ) was found. The highest values of Pgross were reached at the highest temperature, pH, and nutrient enrichment tested and similarly in the control treatment (no added nutrients) at 33 °C at the lowest pH. The Q 10 Pgross values confirmed the effect of temperature only under nutrient enrichment scenarios. Besides the above, bicarbonate (HCO3 -) absorption was assessed by the content of carbon stable isotope (δ13C) in algae tissue and by its incorporation into photosynthetic products, as well as by carbonic anhydrase (CA) inhibitors (Acetazolamide, AZ and Ethoxyzolamide, EZ) assays. The labeling of δ13C revealed this species uses both, CO2 and HCO3 - forms of Ci relying on a CO2 Concentration Mechanism (CCM). These results were validated by the EZ-AZ inhibition assays in which photosynthesis inhibition was observed, indicating the action of internal CA, whereas AZ inhibitor did not affect maximum photosynthesis (Pmax ). The incorporation of 13C isotope into aspartate in light and dark treatments also confirmed photosynthetic and non-photosynthetic the HCO3 -uptake.

15.
Front Plant Sci ; 11: 1289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973848

RESUMO

Climate change is expected to intensify water restriction to crops, impacting on the yield potential of crops such as popcorn. This work aimed to evaluate the performance of 10 field cultivated popcorn inbred lines during two growing seasons, under well-watered (WW) and water stressed (WS) (ψsoil≥ -1.5 MPa) conditions. Water stress was applied by withholding irrigation in the phenological phase of male pre-anthesis. Additionally, two contrasting inbred lines, P7 (superior line) and L75 (low performer) were compared for grain yield (GY) and expanded popcorn volume (EPV), selected from previous studies, were tested under greenhouse conditions. In the field, no genotype x water condition x crop season (G×WC×CS) interaction was observed, whereas GY (-51%), EPV (-55%) and leaf greenness (SPAD index) measured 17 days after anthesis (DAA) (> -10%) were highly affected by water limitation. In general, root traits (angles, number, and density) presented G×WC×CS interaction, which did not support their use as selection parameters. In relation to leaf senescence, for both WS and WW conditions, the superior inbred lines maintained a stay-green condition (higher SPAD index) until physiological maturity, but maximum SPAD index values were observed later in WW (48.7 by 14 DAA) than in WS (43.9 by 7 DAA). Under both water conditions, negative associations were observed between SPAD index values 15 and 8 days before anthesis DBA), and GY and EPV (r ≥ -0.69), as well as between SPAD index 7, 17, and 22 DAA, and angles of brace root (AB), number of crown roots (NC) and crown root density (CD), in WS (r ≥ -0.69), and AB and CD, in WW (r ≥ -0.70). Lower NC and CD values may allow further root deepening in WS conditions. Under WS P7 maintained higher net photosynthesis values, stomatal conductance, and transpiration, than L75. Additionally, L75 exhibited a lower (i.e., more negative) carbon isotope composition value than P7 under WS, confirming a lower stomatal aperture in L75. In summary, besides leaf greenness, traits related to leaf photosynthetic status, and stomatal conductance were shown to be good indicators of the agronomic performance of popcorn under water constraint.

16.
PeerJ ; 8: e9283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523817

RESUMO

Atmospheric pollution has become a serious threat for human health and the environment. However, the deployment, operation and maintenance of monitoring networks can represent a high cost for local governments. In certain locations, the use of naturally occurring plants for monitoring pollution can be a useful supplement of existing monitoring networks, and even provide information when other types of monitoring are lacking. In this work, we (i) determined the tissue carbon content and the δ13C values for the epiphytic CAM bromeliad Tillandsia recurvata and the relationship of both parameters with the existing CO concentrations in the Valley of Mexico basin and (ii) mapped the spatial distribution of such elemental and isotopic composition for this plant within the basin, in order to assess its potential as an atmospheric biomonitor of carbon monoxide, a pollutant with important repercussions on public health. The CO concentrations in the basin ranged from 0.41 ppm at rural locations to 0.81 ppm at urban sites. The carbon content of T. recurvata, which averaged 42.9 ± 0.34% (dry weight), was not influenced by the surrounding CO concentration. In contrast, the δ13C depended on the sites where the plants were collected. For example, the values were -13.2‰ in rural areas and as low as -17.5‰ in an urban site. Indeed, the isotopic values had a positive linear relationship with the atmospheric CO concentrations. Given the close relationship observed between the isotopic composition of T. recurvata with the CO concentrations in the Valley of Mexico, the δ13C values can be useful for the detection of atmospheric carbonaceous emissions.

17.
Environ Sci Pollut Res Int ; 27(2): 2184-2196, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31773525

RESUMO

Road dust is an indicator widely used when monitoring contamination and evaluating environmental and health risks in urban ecosystems. We conducted an exhaustive characterization of road dust samples coupling their chemical characteristics and stable isotope compositions (C and N) with the aim of evaluating the levels and spatial distribution of local contamination as well as to identify its main source(s) in the coastal city of Cienfuegos (Cuba). Results indicate that the concentrations of several elements (total nitrogen, S, Ca, V, Cu, Zn, Mo, Sn, Hg, and Pb) exceed the background values reported for both Cuban soils and the upper continental crust (UCC) and showed a high variability among the sampling sites. We show that road dust contamination in Cienfuegos induces high associated ecological risks. Among the studied elements, Cd and Hg are the major contributors to the environmental contamination in the city, mainly along busy roads and downtown. δ13C and δ15N, coupled to a multivariate statistical analysis, help associate the studied elements to several local sources of contamination: mineral matter derived from local soils, cement plant and related activities, road pavement alteration, power plant, road traffic, and resuspension of particulate organic matter (POM). Our results suggest that incorporating the chemical and isotope monitoring of road dust may help implement more effective environmental management measures in order to reduce their adverse impact on ecosystems and human health.


Assuntos
Poeira/análise , Monitoramento Ambiental , Metais Pesados/análise , Isótopos de Carbono , Cidades , Cuba , Isótopos de Nitrogênio , Medição de Risco
18.
Environ Sci Pollut Res Int ; 26(32): 33023-33029, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31512132

RESUMO

The goals of this study were to analyze if there is a difference in the stable isotopic ratio (δ13C and δ15N) of macrobenthic species sampled at two sandy beaches (one close to a river mouth and the other far from any freshwater input) and to identify differences in the stable isotopic ratio (δ13C and δ15N) in different body parts of three representative species of two Brazilian sandy beach macrofaunas: the polychaete Hemipodia californiensis, the mollusk bivalve Donax hanleyanus, and the crustacean decapod Emerita brasiliensis. No significant differences were detected in the δ13C stable isotopic ratio between the two sites analyzed; however, in the δ15N stable isotopic ratio, a significant difference was observed. Regarding the intraspecific response of stable isotopic ratio, D. hanleyanus showed a significant difference in carbon among different body part structures, while a trend for significance was observed for nitrogen isotopes. The differences were significant for both isotopes in E. brasiliensis, and no differences were observed among the body part structures in H. californiensis. There were significant differences in E. brasiliensis carapaces with regard to the δ15N stable isotopic ratio between the muscle and the whole body. Although the δ13C and δ15N stable isotopic ratio differs significantly in the digestive tract, muscles, and whole body of D. hanleyanus, such differences were not enough to determine changes in their trophic levels and food sources. Similar stable isotopic ratios were observed in the whole body, proboscis, and teeth of H. californiensis, highlighting this species as the top predator. In conclusion, stable isotopic analysis of benthic trophic structure can be employed as a tool in coastal management plans or environmental impact studies.


Assuntos
Monitoramento Ambiental , Poluentes da Água/análise , Animais , Praias , Bivalves , Brasil , Carbono/análise , Isótopos de Carbono/análise , Decápodes , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Nutrientes , Rios
19.
Mar Environ Res ; 147: 13-23, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30979528

RESUMO

Large-scale nutrient fertilisation by coastal upwelling promotes benthic productivity through energy subsidies from enhanced phytoplankton production, and predictions of alterations to upwelling under climate change have implications for benthic ecosystem functioning. We investigated the stable isotope compositions of two bioengineers of global significance, the mussels Perna perna and Mytilus galloprovincialis, from upwelling and non-upwelling sites in five upwelling systems. Samples from Brazil, South Africa and Oman exhibited lower δ13C values at upwelling sites than at non-upwelling sites, with clearer effects where upwelling is more intense and frequent. North West Africa showed variability, probably linked to Saharan dust input. We highlight the importance of upwelling to sustaining benthic primary consumers and the sensitivity of consumer diet to the intensity and frequency of upwelling within each region. These results have implications in relation to climate change scenario effects on upwelling events, with potential cascading effects on higher trophic levels and ecosystem functioning.


Assuntos
Ecossistema , Invertebrados , Animais , Brasil , Cadeia Alimentar , Isótopos , Omã , Dinâmica Populacional , África do Sul
20.
Proc Biol Sci ; 286(1895): 20182284, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963945

RESUMO

Liverworts and mosses are a major component of the epiphyte flora of tropical montane forest ecosystems. Canopy access was used to analyse the distribution and vertical stratification of bryophyte epiphytes within tree crowns at nine forest sites across a 3400 m elevational gradient in Peru, from the Amazonian basin to the high Andes. The stable isotope compositions of bryophyte organic material (13C/12C and 18O/16O) are associated with surface water diffusive limitations and, along with C/N content, provide a generic index for the extent of cloud immersion. From lowland to cloud forest δ13C increased from -33‰ to -27‰, while δ18O increased from 16.3‰ to 18.0‰. Epiphytic bryophyte and associated canopy soil biomass in the cloud immersion zone was estimated at up to 45 t dry mass ha-1, and overall water holding capacity was equivalent to a 20 mm precipitation event. The study emphasizes the importance of diverse bryophyte communities in sequestering carbon in threatened habitats, with stable isotope analysis allowing future elevational shifts in the cloud base associated with changes in climate to be tracked.


Assuntos
Biodiversidade , Biomassa , Briófitas/química , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Altitude , Florestas , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA