Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139194, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574525

RESUMO

Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.


Assuntos
Ácidos Graxos , Azeite de Oliva , Uruguai , Argentina , Ácidos Graxos/química , Ácidos Graxos/análise , Azeite de Oliva/química , Análise Discriminante , Isótopos de Carbono/análise
2.
Hum Biol ; 90(3): 197-211, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33947175

RESUMO

This study investigated the relationship between 18O and 2H isotopes in samples of Mexican hair and drinking water. The purpose of this study was twofold: to quantify the relationship between isotopes in Mexican hair and tap water, in order to understand the impact of water stress and differing socioeconomic status on accurate predictions of drinking water; and to determine whether currently existing semimechanistic models can accurately represent the relationship between hair and tap water. This study used a subset of paired samples of human hair (n = 62) and tap water (n = 76). Isotope values in tap water ranged from -11.4‰ to -4.3‰ and -79.1‰ to -22.5‰, and in hair from +9.5‰ to +16.1‰ and -90.8‰ to -53.7‰, for δ18O and δ2H, respectively. The most depleted δ18O and δ2H hair values came from individuals in the state of Morelos. For modern Mexican populations, positive correlations between isotopes in hair and water were not significant, with correlation coefficients r = 0.61 (p = 0.05) and r = 0.60 (p = 0.06) for 18O and 2H, respectively. Error-in-variables regression yielded linear fits that were somewhat better for 2H relative to 18O: δ18Oh = 0.183 [±0.132] δ18Otw + 15.7 [±0.9]‰ (r2 = 0.23); δ2Hh = 0.181 [±0.076] δ2Htw - 64.0 [±3.0]‰ (r2 = 0.34). In short, data from this Mexican population did not exhibit the strong relationships between isotope values of 18O and 2H in tap water and hair that have been characteristic of other populations studied to date. Given the economic stratification of this region and the poor correlation between hair and water samples, the authors considered the possibility that l, the fraction of the diet derived from local sources, and fs, the fraction of nonexchangeable H in keratin that was fixed in vivo, are local rather than global parameters for this population. The authors estimated different values of l and fs for each location. Given the anticipated importance of the nonlocal dietary contribution, they treated the isotopic content of nonlocal food and the offset parameters for predicting isotopes in locally derived food as tuning parameters and compared the results with parameters based on the American supermarket diet. They found that, although O and H isotopes in water and hair maintained similar geographic distributions, O and H isotopes in tap water explained only a small part of the variation observed in hair samples. Compared to the standard American supermarket diet, the Mexican estimates for nonlocal diet and local diet offsets predicted regional distributions of l and fs that cleanly segregated urban areas from rural towns.

3.
Biol Lett ; 10(11): 20140759, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25392315

RESUMO

Stable oxygen isotopes are increasingly used in ecological research. Here, I present oxygen isotope (δ(18)O) values for bone carbonate and collagen from howler monkeys (Alouatta palliata), spider monkeys (Ateles geoffroyi) and capuchins (Cebus capucinus) from three localities in Costa Rica. There are apparent differences in δ(18)Ocarbonate and δ(18)Ocollagen among species. Monkeys from moist forest have significantly lower isotope values than those from drier localities. Because patterns are similar for both substrates, discrimination (Δ) between δ(18)Ocarbonate and δ(18)Ocollagen is relatively consistent among species and localities (17.6 ± 0.9‰). Although this value is larger than that previously obtained for laboratory rats, consistency among species and localities suggests it can be used to compare δ(18)Ocarbonate and δ(18)Ocollagen for monkeys, and potentially other medium-bodied mammals. Establishing discrimination for oxygen between these substrates for wild monkeys provides a foundation for future environmental and ecological research on modern and ancient organisms.


Assuntos
Alouatta/metabolismo , Atelinae/metabolismo , Osso e Ossos/química , Carbonatos/metabolismo , Cebus/metabolismo , Colágeno/metabolismo , Animais , Costa Rica , Ecossistema , Feminino , Masculino , Isótopos de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA