Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Assunto principal
Intervalo de ano de publicação
1.
Braz J Psychiatry ; 44(5): 495-506, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36420910

RESUMO

OBJECTIVE: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. METHODS: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. RESULTS: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. CONCLUSIONS: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Radioisótopos de Carbono/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides
2.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; Braz. J. Psychiatry (São Paulo, 1999, Impr.);44(5): 495-506, Sept.-Oct. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403774

RESUMO

Objective: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. Methods: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. Results: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. Conclusions: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA