Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 202: 111065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879244

RESUMO

Relative biological effectiveness is a radiobiological parameter relevant in radiotherapy planning and useful in evaluating the physiological impact of radiation in different tissues. Targeted radionuclide therapy allows the selective and specific deposition of higher radiation doses in a noninvasive way and without collateral effects through the administration of radiopharmaceuticals. Lu-DOTA-177(hydrazinylnicotinoyl-Lys-(Nal)-NH-CO-NH-Glu) also called Lu-iPSMA177 is a third generation radiopharmaceutical composed by a peptide that recognizes the prostate-specific membrane antigen (PSMA), a membrane protein overexpressed in several types of cancer and that mediates the radiopharmaceutical's recognition of cancer cells. The present study reports radiobiological parameters of Lu-iPSMA177 and demonstrates the superiority of targeted radiopharmaceuticals over external radiotherapy treatment options in terms of their relative biological effectiveness. The relative biological effectiveness value of 1.020±0.003 for the LINAC, estimated by fitting the linear-quadratic model equation to the resulting survival curves, was like those of 1.25±0.04,1.060±0.005and1.00±0.04 obtained by an alternative method in relation to the mean lethal doses at 90, 80 or 60 survival percent respectively. While the relative biological effectiveness values of 5.65±0.13,4.72±0.27and2.87±0.19 estimated for Lu-iPSMA177 were significantly higher than those for the LINAC. The results confirm that the biological effect produced by the deposition of a radiation absorbed dose delivered by the LINAC can be induced with a quarter of that dose using Lu-iPSMA177 due to the energy distribution, dose-rate and energy fluence.


Assuntos
Radioisótopos , Compostos Radiofarmacêuticos , Masculino , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Eficiência Biológica Relativa , Radioisótopos/uso terapêutico , Lutécio/uso terapêutico
2.
Pharmaceutics ; 15(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514174

RESUMO

177Lu-iPSMA is a novel radioligand developed at ININ-Mexico with a high affinity for the PSMA protein heavily expressed in cancer cells of approximately 95% of patients with metastatic castration-resistant prostate cancer (mCRPC). 177Lu-DOTATOC is a patent-free radioligand, molecularly recognized by somatostatin receptors (SSTR-2) overexpressed in cancer cells of about 80% of patients with metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NET). This translational research aimed to determine the efficacy and safety of 177Lu-iPSMA and 177Lu-DOTATOC developed as GMP pharmaceutical formulations for treating progressive and advanced mCRPC and NET. One hundred and forty-five patients with mCRPC and one hundred and eighty-seven subjects with progressive NET (83% GEP-NET and 17% other NET), treated with 177Lu-iPSMA and 177Lu-DOTATOC, respectively, were evaluated. Patients received a mean dose of 7.4 GBq per administration of 177Lu-iPSMA (range 1-5 administrations; 394 treatment doses) or 177Lu-DOTATOC (range 2-8 administrations; 511 treatment doses) at intervals of 1.5-2.5 months. Efficacy was assessed by SPECT/CT or PET/CT. Results were stratified by primary tumor origin and number of doses administered. Patients with mCRPC showed overall survival (OS) of 21.7 months with decreased radiotracer tumor uptake (SUV) and PSA level in 80% and 73% of patients, respectively. In addition, a significant reduction in pain (numerical scale from 10-7 to 3-1) was observed in 88% of patients with bone metastases between one and two weeks after the second injection. In the GEP-NET population, the median progression-free survival was 34.7 months, with an OS of >44.2 months. The treatments were well tolerated. Only ten patients experienced grade ≥ 3 myelosuppression (3% of all patients). The observed safety profiles and favorable therapeutic responses demonstrated the potential of 177Lu-iPSMA and 177Lu-DOTATOC to improve overall survival and quality of life in patients with progressive and advanced mCRPC and NET.

3.
Appl Radiat Isot ; 146: 24-28, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30743222

RESUMO

The therapeutic potential of 177Lu-iPSMA on hypoxic cancer cells has not been yet demonstrated. The aim of this work was to evaluate the radiation dose effect of 177Lu-iPSMA on viability and DNA damage in U87MG human glioma cells subjected to hypoxia-mimetic conditions. U87MG cells treated with 177Lu-iPSMA were incubated with CoCl2 in order to induce hypoxia-mimetic conditions. The cytotoxic and genotoxic effect was evaluated with an in vitro viability test and a neutral comet assay. 177Lu-iPSMA decreased the cell viability and induced DNA double strand breaks in U87MG human glioma cells under hypoxia-mimetic conditions. 177Lu-iPSMA produced the maximum effect at 48 h, suggesting that this radiopharmaceutical could be used as a strategy for the treatment of human glioma hypoxic cells.


Assuntos
Glioma/radioterapia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Lutécio/uso terapêutico , Radioisótopos/uso terapêutico , Antígenos de Superfície , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Glioma/metabolismo , Glioma/patologia , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Hipóxia Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA