Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biom J ; 60(2): 352-368, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29194715

RESUMO

The deterministic inputs, noisy, "and" gate (DINA) model is a popular cognitive diagnosis model (CDM) in psychology and psychometrics used to identify test takers' profiles with respect to a set of latent attributes or skills. In this work, we propose an estimation method for the DINA model with the No-U-Turn Sampler (NUTS) algorithm, an extension to Hamiltonian Monte Carlo (HMC) method. We conduct a simulation study in order to evaluate the parameter recovery and efficiency of this new Markov chain Monte Carlo method and to compare it with two other Bayesian methods, the Metropolis Hastings and Gibbs sampling algorithms, and with a frequentist method, using the Expectation-Maximization (EM) algorithm. The results indicated that NUTS algorithm employed in the DINA model properly recovers all parameters and is accurate for all simulated scenarios. We apply this methodology in the mental health area in order to develop a new method of classification for respondents to the Beck Depression Inventory. The implementation of this method for the DINA model applied to other psychological tests has the potential to improve the medical diagnostic process.


Assuntos
Biometria/métodos , Cognição , Modelos Estatísticos , Psicometria , Algoritmos , Depressão/fisiopatologia , Depressão/psicologia , Humanos , Método de Monte Carlo
2.
Appl Psychol Meas ; 40(4): 302-310, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29881055

RESUMO

The Poisson's binomial (PB) is the probability distribution of the number of successes in independent but not necessarily identically distributed binary trials. The independent non-identically distributed case emerges naturally in the field of item response theory, where answers to a set of binary items are conditionally independent given the level of ability, but with different probabilities of success. In many applications, the number of successes represents the score obtained by individuals, and the compound binomial (CB) distribution has been used to obtain score probabilities. It is shown here that the PB and the CB distributions lead to equivalent probabilities. Furthermore, one of the proposed algorithms to calculate the PB probabilities coincides exactly with the well-known Lord and Wingersky (LW) algorithm for CBs. Surprisingly, we could not find any reference in the psychometric literature pointing to this equivalence. In a simulation study, different methods to calculate the PB distribution are compared with the LW algorithm. Providing an exact alternative to the traditional LW approximation for obtaining score distributions is a contribution to the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA