Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 17(1): 213, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893173

RESUMO

BACKGROUND: Homoplasy affects demographic inference estimates. This effect has been recognized and corrective methods have been developed. However, no studies so far have defined what homoplasy metrics best describe the effects on demographic inference, or have attempted to estimate such metrics in real data. Here we study how homoplasy in chloroplast microsatellites (cpSSR) affects inference of population expansion time. cpSSRs are popular markers for inferring historical demography in plants due to their high mutation rate and limited recombination. RESULTS: In cpSSRs, homoplasy is usually quantified as the probability that two markers or haplotypes that are identical by state are not identical by descent (Homoplasy index, P). Here we propose a new measure of multi-locus homoplasy in linked SSR called Distance Homoplasy (DH), which measures the proportion of pairwise differences not observed due to homoplasy, and we compare it to P and its per cpSSR locus average, which we call Mean Size Homoplasy (MSH). We use simulations and analytical derivations to show that, out of the three homoplasy metrics analyzed, MSH and DH are more correlated to changes in the population expansion time and to the underestimation of that demographic parameter using cpSSR. We perform simulations to show that Approximate Bayesian Computation (ABC) can be used to obtain reasonable estimates of MSH and DH. Finally, we use ABC to estimate the expansion time, MSH and DH from a chloroplast SSR dataset in Pinus caribaea. To our knowledge, this is the first time that homoplasy has been estimated in population genetic data. CONCLUSIONS: We show that MSH and DH should be used to quantify how homoplasy affects estimates of population expansion time. We also demonstrate how ABC provides a methodology to estimate homoplasy in population genetic data.


Assuntos
Cloroplastos/genética , Repetições de Microssatélites , Pinus/genética , Teorema de Bayes , América Central , Simulação por Computador , Genética Populacional , Haplótipos , Modelos Genéticos , Pinus/classificação
2.
PLoS One ; 7(10): e46123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056246

RESUMO

Gene flow of transgenes into non-target populations is an important biosafety concern. The case of genetically modified (GM) maize in Mexico has been of particular interest because of the country's status as center of origin and landrace diversity. In contrast to maize in the U.S. and Europe, Mexican landraces form part of an evolving metapopulation in which new genes are subject to evolutionary processes of drift, gene flow and selection. Although these processes are affected by seed management and particularly seed flow, there has been little study into the population genetics of transgenes under traditional seed management. Here, we combine recently compiled data on seed management practices with a spatially explicit population genetic model to evaluate the importance of seed flow as a determinant of the long-term fate of transgenes in traditional seed systems. Seed flow between farmers leads to a much wider diffusion of transgenes than expected by pollen movement alone, but a predominance of seed replacement over seed mixing lowers the probability of detection due to a relative lack of homogenization in spatial frequencies. We find that in spite of the spatial complexities of the modeled system, persistence probabilities under positive selection are estimated quite well by existing theory. Our results have important implications concerning the feasibility of long term transgene monitoring and control in traditional seed systems.


Assuntos
Fluxo Gênico , Sementes/genética , Transgenes/genética , Zea mays/genética , Agricultura/métodos , Algoritmos , Deriva Genética , Genética Populacional , México , Modelos Genéticos , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 108(3): 1088-92, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21189301

RESUMO

The last two decades have seen important advances in our knowledge of maize domestication, thanks in part to the contributions of genetic data. Genetic studies have provided firm evidence that maize was domesticated from Balsas teosinte (Zea mays subspecies parviglumis), a wild relative that is endemic to the mid- to lowland regions of southwestern Mexico. An interesting paradox remains, however: Maize cultivars that are most closely related to Balsas teosinte are found mainly in the Mexican highlands where subspecies parviglumis does not grow. Genetic data thus point to primary diffusion of domesticated maize from the highlands rather than from the region of initial domestication. Recent archeological evidence for early lowland cultivation has been consistent with the genetics of domestication, leaving the issue of the ancestral position of highland maize unresolved. We used a new SNP dataset scored in a large number of accessions of both teosinte and maize to take a second look at the geography of the earliest cultivated maize. We found that gene flow between maize and its wild relatives meaningfully impacts our inference of geographic origins. By analyzing differentiation from inferred ancestral gene frequencies, we obtained results that are fully consistent with current ecological, archeological, and genetic data concerning the geography of early maize cultivation.


Assuntos
Demografia , Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética , Bases de Dados Genéticas , Frequência do Gene , Deriva Genética , Genótipo , Geografia , México , Análise de Componente Principal , Especificidade da Espécie
4.
Mol Ecol ; 19(6): 1162-73, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20163543

RESUMO

Analysis of fine scale genetic structure in continuous populations of outcrossing plant species has traditionally been limited by the availability of sufficient markers. We used a set of 468 SNPs to characterize fine-scale genetic structure within and between two dense stands of the wild ancestor of maize, teosinte (Zea mays ssp. parviglumis). Our analyses confirmed that teosinte is highly outcrossing and showed little population structure over short distances. We found that the two populations were clearly genetically differentiated, although the actual level of differentiation was low. Spatial autocorrelation of relatedness was observed within both sites but was somewhat stronger in one of the populations. Using principal component analysis, we found evidence for significant local differentiation in the population with stronger spatial autocorrelation. This differentiation was associated with pronounced shifts in the first two principal components along the field. These shifts corresponded to changes in allele frequencies, potentially due to local topographical features. There was little evidence for selection at individual loci as a contributing factor to differentiation. Our results demonstrate that significant local differentiation may, but need not, co-occur with spatial autocorrelation of relatedness. The present study represents one of the most detailed analyses of local genetic structure to date and provides a benchmark for future studies dealing with fine scale patterns of genetic diversity in natural plant populations.


Assuntos
Evolução Molecular , Genética Populacional , Zea mays/genética , DNA de Plantas/genética , Fluxo Gênico , Frequência do Gene , Variação Genética , Genótipo , Desequilíbrio de Ligação , México , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Seleção Genética , Análise de Sequência de DNA
5.
Theor Appl Genet ; 119(5): 875-88, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19578830

RESUMO

Replacement of crop landraces by modern varieties is thought to cause diversity loss. We studied genetic erosion in maize within a model system; modernized smallholder agriculture in southern Mexico. The local seed supply was described through interviews and in situ seed collection. In spite of the dominance of commercial seed, the informal seed system was found to persist. True landraces were rare and most informal seed was derived from modern varieties (creolized). Seed lots were characterized for agronomical traits and molecular markers. We avoided the problem of non-consistent nomenclature by taking individual seed lots as the basis for diversity inference. We defined diversity as the weighted average distance between seed lots. Diversity was calculated for subsets of the seed supply to assess the impact of replacing traditional landraces with any of these subsets. Results were different for molecular markers, ear- and vegetative/flowering traits. Nonetheless, creolized varieties showed low diversity for all traits. These varieties were distinct from traditional landraces and little differentiated from their ancestral stocks. Although adoption of creolized maize into the informal seed system has lowered diversity as compared to traditional landraces, genetic erosion was moderated by the distinct features offered by modern varieties.


Assuntos
Agricultura , Zea mays/genética , Biomassa , Análise por Conglomerados , Variação Genética , Geografia , México , Fenótipo , Filogenia , Característica Quantitativa Herdável , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA