Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 353: 802-822, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521691

RESUMO

This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.


Assuntos
Neoplasias , Poloxâmero , Humanos , Poloxâmero/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias/tratamento farmacológico
2.
J Mater Sci Mater Med ; 28(5): 68, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28357686

RESUMO

Tissue engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for in vitro cell growth, and functional tissue development, that is subsequently implanted into patient. The aim of the current study was to evaluate the initial aspects of cell interaction with the polymeric biomaterials blends based on hyaluronic acid with chitosan. The hypothesis approach involves synthesis and analysis of swelling and thermal degradation (thermal gravimetric analysis) of the polymer blend; and Vero cell interaction with the biomaterial, through analysis of cytotoxicity, adhesion and cell morphology. The blend resulted in a biomaterial with a high swelling ratio that can allow nutrient distribution and absorption. The thermal gravimetric analysis results showed that the blend had two stages of degradation at temperatures very close to those observed for pure polymers, confirming that the physical mixing of hydrogels occurred, resulting in the presence of both hyaluronic acid and chitosan in the blend. The evaluation of indirect cytotoxicity showed that the blend was non cytotoxic for Vero cells, and the quantitative analysis performed with the MTT could verify a cell viability of 98%. The cells cultured on the blend showed adhesion, spreading and proliferation on this biomaterial, distinguished from the pattern of the control cells. These results showed that the blends produced from hyaluronic acid and chitosan hydrogels are promising for applications in tissue engineering, aiming at future cartilaginous tissue.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Ácido Hialurônico/química , Alicerces Teciduais/química , Animais , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Chlorocebus aethiops , Humanos , Hidrogéis , Teste de Materiais , Polímeros/química , Engenharia Tecidual/métodos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA