Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(3): 211340, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35360349

RESUMO

Mastigimas anjosi is an important pest of Cedrela fissilis in the southeastern and southern regions of Brazil. The objective of the present study was to investigate the effect of the temperature, relative humidity, rainfall and natural enemies on the flight activity of adults and the movement of M. anjosi nymphs, with two sampling methods, yellow sticky traps and direct collections on the leaves of C. fissilis trees. The sex ratio of this pest was also assessed. The number of M. anjosi individuals was negatively correlated with the minimum and maximum temperatures, with a population peak in late May and early June 2017. The numbers of individuals of this psyllid was positively correlated with the relative humidity and rainfall. Larvae and adults of Cycloneda sanguinea, Hippodamia convergens adults and Atopozelus opsimus nymphs and adults preyed upon M. anjosi adults and nymphs on C. fissilis leaves in the field. Mastigimas anjosi sex ratio was 0.46. Information about sampling methods of M. anjosi and its natural enemies is presented and can contribute to the integrated management of this pest in the field.

2.
PeerJ ; 7: e6768, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024771

RESUMO

The use of residue of sugarcane ethanol industry named vinasse in fertirrigation is an established and widespread practice in Brazil. Both non-concentrated vinasse (NCV) and concentrated vinasse (CV) are used in fertirrigation, particularly to replace the potassium fertilizer. Although studies on the chemical and organic composition of vinasse and their impact on nitrous oxide emissions when applied in soil have been carried out, no studies have evaluated the microbial community composition and diversity in different forms of vinasse. We assessed the bacterial community composition of NCV and CV by non-culturable and culturable approaches. The non-culturable bacterial community was assessed by next generation sequencing of the 16S rRNA gene and culturable community by isolation of bacterial strains and molecular and biochemical characterization. Additionally, we assessed in the bacterial strains the presence of genes of nitrogen cycle nitrification and denitrification pathways. The microbial community based on 16S rRNA sequences of NCV was overrepresented by Bacilli and Negativicutes while CV was mainly represented by Bacilli class. The isolated strains from the two types of vinasse belong to class Bacilli, similar to Lysinibacillus, encode for nirK gene related to denitrification pathway. This study highlights the bacterial microbial composition particularly in CV what residue is currently recycled and recommended as a sustainable practice in sugarcane cultivation in the tropics.

3.
MethodsX ; 5: 656-668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003050

RESUMO

This methodology is proposed to measure the fluxes of trace gases among microcosms and the atmosphere. As microcosm respiration we include both aerobic and anaerobic respiration, which may results in CO2, CH4, NO, N2O, N2, H2S and H2 fluxes. Its applicability includes the assessment of products biodegradability and toxicity, the effect of treatments and products on greenhouse gases fluxes, and the mineralization of organic fertilizers. A step by step procedure; the complementary parameters and good practices that might be taken into account to perform a microcosm experiment; and the tools nowadays available that could be useful in this respirometric methodology are presented. We included a spreadsheet with calculus examples. Samples were taken at 1; 30; 60 and 90 min after closing the microcosms to determine the gases fluxes. The dilution effect was negligible, as we present. Besides CO2, we have successfully quantified the fluxes of CH4 and N2O from the microcosms in a broad range of concentrations. This method is useful in technical and scientific studies, for instances to test new products and improve the understanding of microbial processes, respectively. •Simple materials are required to set up the microcosm.•Examples of (pre) treatments are given regarding water availability, fertilizer doses, pH adjustment and nutrients amendments.•The method was suitable to directly measure multiple trace gases fluxes, either produced or consumed during microcosm respiration.

4.
Ecol Evol ; 1(3): 421-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22393511

RESUMO

We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (C(AGB)) varied along the elevation range from approximately 110 to 150 Mg·ha(-1), and nitrogen aboveground stock (N(AGB)), varied from approximately 1.0 to 1.9 Mg·ha(-1). The carbon belowground stock (C(BGB)) and the nitrogen belowground stock (N(BGB)) were significantly higher than the AGB and varied along the elevation range from approximately 200-300 Mg·ha(-1), and from 14 to 20 Mg·ha(-1), respectively. Finally, the total carbon stock (C(TOTAL)) varied from approximately 320 to 460 Mg·ha(-1), and the nitrogen total stock (N(TOTAL)) from approximately 15 to 22 Mg·ha(-1). Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha(-1) and 1 Mg·ha(-1) of carbon and nitrogen, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA