Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 32(1): 146-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083740

RESUMO

BACKGROUND: Trace elements comprise both nutritionally essential and non-essential, and their presence in organisms plays important role in human health. OBJECTIVE: The aim of this study was to evaluate the levels of trace elements, together with cellular and molecular biomarkers, in adolescents from Tierrabomba Island, a Caribbean community located near an industrial area, comparing them with a group living in San Onofre, a reference community. METHODS: Hair and blood samples were obtained from 238 individuals aged 11-18 years old, 131 from Tierrabomba Island and 107 from San Onofre. Trace elements were quantified in hair using ICP-MS. The hematological evaluation was done by peripheral blood smears, and gene expression analysis was carried out through RT-PCR. RESULTS: Thirteen elements were analyzed; eight showed significant differences between sites. In Tierrabomba, arsenic (As) and tungsten (W) registered mean values greater than in San Onofre. In contrast, in the reference site, average values for boron (B), cobalt (Co), zinc (Zn), yttrium (Y), tin (Sn), and barium (Ba) were greater. The peripheral blood film showed differences between populations. Mean lymphocyte percentage was higher in the Island, while eosinophil and monocyte percentages displayed greater means in San Onofre. Some correlations between trace elements and hematological parameters were found, mainly with platelets in Tierrabomba. This trend remained even when partial correlation coefficients were adjusted for age. Levels of gene expression of metallothionein 1X (MT1X) and superoxide dismutase (SOD) registered significant differences between sites, being greater in Tierrabomba. Negative correlations between SOD and As were observed in both sampling sites. Discriminant analysis suggested sampling locations could be differentiated by Zn, Mo, Ba, and MT1X levels. SIGNIFICANCE: Trace elements and the relative gene expression associated with metal exposure are critical exposure biomarkers for coastal communities.


Assuntos
Oligoelementos , Adolescente , Região do Caribe , Criança , Colômbia , Expressão Gênica , Cabelo/química , Humanos , Oligoelementos/análise
2.
Sci Total Environ ; 710: 136344, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31923687

RESUMO

The deleterious health effects of thoracic fractions seem to be more related to the chemical composition of the particles than to their mass concentration. The presence of hazardous materials in PM10 (e.g., heavy metals and metalloids) causes risks to human health. In this study, twelve trace elements (Cd, Cr, Pb, Zn, Cu, Ni, Sn, Ba, Co, As, V, and Sb) in 315 samples of ambient PM10 were analyzed. The samples were collected at an urban background site in a Latin American megacity (Bogota, Colombia) for one year. The concentrations and temporal variabilities of these elements were examined. According to the results, Cu (52 ng/m3), Zn (44 ng/m3), Pb (25 ng/m3), and Ba (20 ng/m3) were the traces with the highest concentrations, particularly during the dry season (January to March), which was characterized by barbecue (BBQ) charcoal combustion and forest fires. In addition, the differences between the results of weekdays and weekends were identified. The determined enrichment factor (EF) indicated that Zn, Pb, Sn, Cu, Cd, and Sb mainly originated from anthropogenic sources. Moreover, a speciation analysis of inorganic Sb (EF > 300) was conducted, which revealed that Sb(V) was the main Sb species in the PM10 samples (>80%). Six causes for the hazardous elements were identified based on the positive matrix factorization (PMF) model: fossil fuel combustion and forest fires (60%), road dust (19%), traffic-related emissions (9%), copper smelting (8%), the iron and steel industry (2%), and an unidentified industrial sector (2%). Furthermore, a health risk assessment of the carcinogenic elements was performed. Accordingly, the cancer risk of inhalation exposure to Co, Ni, As, Cd, Sb(III), and Pb was negligible for children and adults at the sampling site. For adults, the adjusted Cr(VI) level was slightly higher than the minimal acceptable risk level during the study period (1.4 × 10-6).


Assuntos
Material Particulado/análise , Medição de Risco , Poluentes Atmosféricos , Cidades , Colômbia , Poeira , Monitoramento Ambiental , Metais Pesados , Oligoelementos
3.
Chemosphere ; 242: 125173, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31698215

RESUMO

Cartagena Bay (CB) is an industrialized site in the Caribbean. The aim of this study was to evaluate contamination patterns by trace elements in sediments from CB. Sediment samples from twelve sites in CB, and three at the Grand Marsh of Santa Marta (GMSM), a reference site, were collected during dry and rainy seasons. Forty-four trace elements were evaluated employing ICP-MS, and mercury (Hg) was measured using a Hg analyzer. Most contaminated sites corresponded to stations related to repair and maintenance of ships, with high concentrations of Cr, Cu, As and Cd; as well as in areas where cargo transshipment centers and cruise ship terminals operate, which showed elevated levels of Ba. Stations receiving inputs from petrochemical and fertilizer plants displayed high content of Pb. At the station where an extinct chlor-alkali plant was located, a high total Hg level was found, highlighting its persistence. At least 70% of the samples presented Cr, Cu, and As concentrations that were ≥ Threshold Effect Level, < Probable Effect Level, ≥ Effects Range Low and < Effects Range Medium, suggesting adverse biological effects could occur occasionally. Potential Ecological risk values revealed that only Hg and Cd may generate deleterious effects to the aquatic life. However, with few exceptions, sediment samples from CB can be considered as moderately to heavily contaminated, as shown by the Igeo. In short, the principles of ecosystem-based management should be implemented along Cartagena Bay to guarantee safe levels of trace elements in sediments and a better quality of this estuary.


Assuntos
Baías/química , Sedimentos Geológicos/química , Medição de Risco , Oligoelementos/análise , Poluentes Químicos da Água/análise , Região do Caribe , Ecossistema , Monitoramento Ambiental , Desenvolvimento Industrial , Mercúrio/análise , Metais Pesados/análise , Estações do Ano
4.
Environ Pollut ; 256: 113290, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31813704

RESUMO

The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Sedimentos Geológicos/química , Ouro , Mineração , Rios/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Arsênio/análise , Colômbia , Ecossistema , Monitoramento Ambiental/legislação & jurisprudência , Cadeia Alimentar , Regulamentação Governamental , Humanos , Metais Pesados/análise
5.
Mar Pollut Bull ; 139: 402-411, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686444

RESUMO

Microplastics are new pollutants considered a source of concern for the oceans worldwide. This research reports the concentrations of trace metals on microplastics collected on beaches from Cartagena, an industrialized city in the Caribbean. Mercury (Hg) was quantified using a Hg analyzer and forty-seven trace elements were assessed by ICP/MS. Most abundant microplastics in beaches were those with the lower degree of surface degradation features (SDF), categorized as white-new polyethylene pellets, followed by secondary microplastics (SM). Greater Hg levels were found in SM, white-degraded (WDP) and black pellets. Trace elements concentrations were linked to the degree of SDF registered in examined pellets, with larger concentrations in WDP. Compared to white-new pellets, Ba, Cr, Rb, Sr, Ce, Zr, Ni, Pb were the most accumulated elements in WDP, as their surface enhance the sorption processes. Microplastic pollution represents a toxicological hazard because its ability to accumulate and transport toxic elements.


Assuntos
Metais/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Praias , Região do Caribe , Cidades , Colômbia , Monitoramento Ambiental , Polietileno/análise
6.
Sci Total Environ ; 652: 434-446, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30368174

RESUMO

Road dust has been identified as one of the main sources of outdoor PM10 in Bogota (a Latin American megacity), but there are no studies that have analyzed the physicochemical characteristics and origins of its respirable fraction. A characterization of inorganic compounds (water soluble ions, major and trace elements, organic and elemental carbon) and an analysis of source contributions to the PM10 fraction of road dust were carried out in this study. A total of twenty road dust samples, selected from representative industrial, residential and commercial areas, were swept and resuspended to obtain the thoracic fraction. Size distribution by laser diffraction and individual particle morphology by Scanning Electron Microscopy were also evaluated. The data obtained revealed that the volume (%) of thoracic particles was higher in samples from industrial zones where heavy vehicular traffic, industrial emissions and deteriorated pavements predominated. Crustal elements were the most abundant species, accounting for 49-62% of the thoracic mass, followed by OC (13-29%), water-soluble ions (1.4-3.8%), EC (0.8-1.9%) and trace elements (0.2-0.5%). The Coefficient of Divergence was obtained to identify the spatial variability of the samples. A source apportionment analysis was carried out considering the variability of chemical profiles, enrichment factors and ratios of Fe/Al, K/Al, Ca/Al, Ti/Al, Cu/Sb, Zn/Sb, OC/TC and OC/EC. By means of a PCA analysis, five components were identified, including local soils and pavement erosion (63%), construction and demolition activities (13%), industrial emissions (6%), brake wear (5%) and tailpipe emissions (4%). These components accounted for 91% of the total variance. The results provide data to understand better one of the main sources of PM10 emissions in Bogota, such as road dust. These data will be useful to optimize environmental policies, and they may be used in future studies of human health and air quality modeling.

7.
Metallomics ; 10(3): 463-473, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29485154

RESUMO

Coal mining is one of the economic activities with the greatest impact on environmental quality. At all stages contaminants are released as particulates such as coal dust. The first aim of this study was to obtain an aqueous coal dust extract and characterize its composition in terms of trace elements by ICP-MS. In addition, the developmental toxicity of the aqueous coal extract was evaluated using zebrafish (Danio rerio) after exposure to different concentrations (0-1000 ppm; µg mL-1) to establish acute toxicity, morphology and transcriptome changes. Trace elements within the aqueous coal dust extract present at the highest concentrations (>10 ppb) included Sr, Zn, Ba, As, Cu and Se. In addition, Cd and Pb were found in lower concentrations. No significant difference in mortality was observed (p > 0.05), but a delay in hatching was found at 0.1 and 1000 ppm (p < 0.05). No significant differences in morphological characteristics were observed in any of the treatment groups (p > 0.05). Transcriptomic results of zebrafish larvae revealed alterations in 77, 61 and 1376 genes in the 1, 10, and 100 ppm groups, respectively. Gene ontology analysis identified gene alterations associated with the development and function of connective tissue and the hematological system, as well as pathways associated with apoptosis, the cell cycle, transcription, and oxidative stress including the MAPK signaling pathway. In addition, altered genes were associated with cancer; connective tissue, muscular, and skeletal disorders; and immunological and inflammatory diseases. Overall, this is the first study to characterize gene expression alterations in response to developmental exposure to aqueous coal dust residue from coal mining with transcriptome results signifying functions and systems to target in future studies.


Assuntos
Carvão Mineral/toxicidade , Tecido Conjuntivo/patologia , Poeira/análise , Regulação da Expressão Gênica no Desenvolvimento , Doenças Hematológicas/patologia , Doenças do Sistema Imunitário/patologia , Inflamação/patologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Poluentes Ambientais/toxicidade , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/genética , Doenças do Sistema Imunitário/induzido quimicamente , Doenças do Sistema Imunitário/genética , Inflamação/induzido quimicamente , Inflamação/genética , Transcriptoma , Peixe-Zebra/genética
8.
Environ Pollut ; 233: 142-155, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29059629

RESUMO

Bogota registers frequent episodes of poor air quality from high PM10 concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM10 source contribution. A characterization of the chemical composition and the source apportionment of PM10 at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO42-, Cl-, NO3-, NH4+), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM10 components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM10, high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM10) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM10 source, accounting for ∼50% of the PM10. The results provided novel data about PM10 chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Poluição do Ar/análise , Altitude , Carbono , Colômbia , Poeira/análise , Indústrias , Tamanho da Partícula , Estações do Ano , Oligoelementos/análise , Estados Unidos , Emissões de Veículos/análise
9.
Chemosphere ; 138: 837-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26298075

RESUMO

Extraction, transport and utilization of coal spread out coal dust. Nowadays, Colombia is an important producer of this mineral in South America, being the Santa Marta area one of the largest coal exporting ports in the country. The aim of this work was to assess the pollutants levels and toxicity of shoreline sediments from this place. 16 PAHs and 46 elements were measured in nine locations during dry and rainy seasons. HepG2 cells were exposed to 1% sediment extracts and mRNA expression evaluated for selected genes. PAHs levels were greater during the rainy season. The highest ∑PAHs (89.9 ng g(-1)) appeared at a site located around 300 m far from the coast line at close proximity to the area where coal is loaded into cargo vessels for international shipments, being naphthalene the most abundant PAH. At Santa Marta Bay port, ∑PAHs were 62.8 ng g(-1) and 72.8 ng g(-1) for dry and rainy seasons, respectively, with greatest levels for fluoranthene. Based on sediment standards, most stations have poor condition regarding Cr, but moderate contamination on Cu, Pb and Zn. Sediments from the port and coal transport sites, the most polluted by PAHs and metals, induced CYP1A1 and NQO1 during the dry season. Data showed the sediments from this shoreline have bioactive chemicals that determine their toxicological profile.


Assuntos
Minas de Carvão , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Colômbia , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , RNA Mensageiro/genética , Chuva , Estações do Ano , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA