RESUMO
Lipases are used in many food, energy, and pharmaceutical processes. Thus, new systems have been sought to synthesize alternative lipases with potential biotechnological applications. Kluyveromyces marxianus is a yeast with recognized lipase activity; at least ten putative lipases/esterases in its genome have been detected, and two of them possess a signal peptide for extracellular secretion. The study of extracellular lipases becomes more relevant since they usually have higher activity rates than intracellular lipases and simpler purification mechanisms. For these reasons, this study aimed to characterize the production and lipase activity of the putative extracellular lipases of the K. marxianus L-2029 strain, encoded in the genes LIP3 and YJR107W. Both genes were heterologously expressed in Saccharomyces cerevisiae BY4742 (yeast strain without extracellular lipase activity) using a pYES2.1/V5-His-TOPO® plasmid. Herein, we show evidence that the strain transformed with the LIP3 gene did not show lipase activity during flask galactose induction. On the other hand, the strain transformed with the YJR107W gene showed a specific activity of 0.397 U/mg, with an optimum temperature of 37 °C and pH 6. For maximum cell production, glucose and yeast extract concentrations were evaluated by a 22 factorial design, followed by the validation of the best concentrations predicted by a statistical model; a 22 factorial design was also carried out to evaluate the concentration of the inducer galactose on the transformed strains, and the intracellular and extracellular lipase specific activities were quantified. Finally, the biomass and lipase production were determined for each strain, which was grown in a stirred tank bioreactor with a working volume of 1.5 L. The specific activities of the transformed strains obtained in the bioreactor were 1.36 U/mg for the LIP3 transformant and 1.25 U/mg for the YJR107W transformant, respectively.