Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(8): 085601, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30537684

RESUMO

In this work two high density functional theory (DFT) correlation methodologies, the so called DFT+U (or GGA+U) implementation and the exact exchange of correlated electrons (EECE), hybrid DFT functional (or one case of hybrid DFT), are tested to determine the mechanical properties of americium-II. For each case, the numeric value of their principal parameter is chosen ([Formula: see text] for the first case and [Formula: see text] for the second one) once the crystalline structure meets all the mechanical stability conditions. The results show that there is a range of values of [Formula: see text] and [Formula: see text] in which both methodologies generate a stable (experimentally correct) non-magnetic ground state, reaching approximately the same numeric value of the set of elastic constants of the cubic structure. However, only for the case of the hybrid functional results it is possible to show how the non-magnetic configuration is energetically favored, as compared to the ferromagnetic configuration. This happens around [Formula: see text], a value in agreement with a previous analysis made under the same methodology for the metal case Am-I. Following a detailed and deep analysis, it is possible to find a close interrelation between the electronic properties of the metal: its distribution of states around the Fermi level, the energy difference between the two possible spin configurations, and the mechanical response of the crystal. Also, it is possible to conclude that the effect of alpha parameter on the [Formula: see text] electrons can be used as a parameter to simulate the presence of an external pressure over the structure. For the comparison, the calculations were performed within the LAPW approximation in DFT as implemented in the WIEN2k code, with a finite deformation method.

2.
J Phys Condens Matter ; 29(35): 355401, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28653960

RESUMO

We have studied the electronic, lattice dynamical, and electron-phonon properties of the actinides [Formula: see text]Th x alloy within the framework of density functional perturbation theory. The self-consistent virtual crystal approximation is used for the alloy modeling, and spin-orbit coupling is included in the calculation of all relevant quantities. An overall decrease of the electron-phonon coupling (λ) by [Formula: see text] from Ac to Th was observed. However, its dependence on x shows a non-linear behavior. λ reduces just 6% from Ac to a Th content of [Formula: see text], then drops drastically (∼[Formula: see text]) from there until [Formula: see text]. The large decrease of λ for [Formula: see text] is due to the reduction of the density of states at the Fermi level ([Formula: see text]), combined with a general phonon hardening. On contrast, the behavior for [Formula: see text] is the result of a subtle balance between an enhancement of phase space and the above mentioned effects on [Formula: see text] and the phonons. The phase-space enhancement is related to the appearance of Kohn anomalies, which fade away as the Th concentration increases.

3.
J Phys Condens Matter ; 29(14): 145401, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28251959

RESUMO

Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA