RESUMO
Toxoplasmosis is an emerging and re-emerging infectious disease that can be transmitted through a contaminated environment. Environmental contamination is an emergency health issue, and determining its occurrence is fundamental to a One Health approach. In this study, we addressed the extent of environmental contamination and viability of Toxoplasma gondii oocysts in soil in different environments on Fernando de Noronha Island, Brazil. In addition, we performed species distribution modelling to predict the environmental suitability for coccidia persistence in the studied area. Soil samples were collected in 14 neighbourhoods of the Island and in the four main squares, creating a total of 95 soil samples (five samples per site). The samples were analyzed by the polymerase chain reaction (PCR) technique for the presence of the 18S ribosomal DNA gene of Apicomplexan protozoa, followed by genetic sequencing. We obtained 4.2% (4/95) positive soil samples with 100% similarity for T. gondii sequences. Two out of four positive sites on PCR showed viability of T. gondii oocysts through the mouse bioassay technique. As a result of the application of the species distribution modelling, environmental adequacy for the coccidia was observed throughout the Island. The results confirm the contamination of the soil in this insular environment by T. gondii oocysts and the environmental suitability by modelling application. These findings are an alert for the possibility of infection in animals and humans by contaminated soil, and for contamination of the maritime environment in addition to water resources for consumption by the local population.
Assuntos
Doenças dos Roedores , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Camundongos , Humanos , Toxoplasma/genética , Oocistos/genética , Solo , Brasil/epidemiologia , Toxoplasmose/parasitologia , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/parasitologiaRESUMO
Climate and environmental conditions are determinant for coral distribution and their very existence. When changes in such conditions occur, their effects on distribution can be predicted through species distribution models, anticipating suitable habitats for the subsistence of species. Mussismilia harttii is one of the most endangered Brazilian endemic reef-building corals, and in increasing risk of extinction. Herein, species distribution models were used to determine the present and future potential habitats for M. harttii. Estimations were made through the maximum entropy approach, predicting suitable habitat losses and gains by the end of the 21st century. For this purpose, species records published in the last 20 years and current and future environmental variables were correlated. The best models were chosen according to the Akaike information criterion (AIC) and evaluated through the partial ROC (AUCratio), a new approach which uses independent occurrence data. Both approaches showed that the models performed satisfactorily in predicting potential habitat areas for the species. Future projections were made using the International Panel on Climate Change (IPCC) scenarios for 2100, with different levels of greenhouse gas emission. Representative Concentration Pathways (RCPs) were used to model the Future Potential Habitat (FPH) of M. harttii in two different scenarios: stabilization of emissions (RCP 4.5) and increase of emissions (RCP 8.5). According to the results, shallow waters to the south of the study area concentrate most of the current potential habitats for the species. However, in future scenarios, there was a loss of suitable areas in relation to the Current Potential Habitat (RCP 4.5 46% and RCP 8.5 59%), whereas there is a southward shift of the suitable areas. In all scenarios of FPH, the temperature was the variable with the greatest contribution to the models (> 35%), followed by the current velocity (> 33%) and bathymetry (>29%). In contrast, there is an increase of deep (50-75 m) suitable areas FPH scenarios, mainly in the southern portion of its distribution, at Abrolhos Bank (off Espirito Santo State). These deeper sites might serve as refugia for the species in global warming scenarios. Coral communities at such depths would be less susceptible to impacts of climate change on temperature and salinity. However, the deep sea is not free from human impacts and measures to protect deeper ecosystems should be prioritized in environmental policies for Brazilian marine conservation, especially the Abrolhos Bank, due to its importance for M. harttii.