Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 6(6): e01605-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578679

RESUMO

UNLABELLED: High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflammation. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulating anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an NF-κB transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha [TNF-α] and interleukin-1ß [IL-1ß])in peripheral blood mononuclear cells from acute malaria patients was found to be a CD14(+) CD16 (FcγRIIIA)(+) CD64 (FcγRI)(high) CD32 (FcγRIIB)(low) monocyte subset. Monocytes from convalescent patients were predominantly of the classical phenotype (CD14(+) CD16(-)) that produces high levels of IL-10 and lower levels of TNF-α and IL-1ß in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions with broad applications to systemic inflammatory diseases. IMPORTANCE: Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Citocinas/metabolismo , DNA de Protozoário/imunologia , Inflamassomos/metabolismo , Malária Falciparum/patologia , Malária Vivax/patologia , Monócitos/metabolismo , Complexo Antígeno-Anticorpo/sangue , Antígenos CD/análise , Humanos , Imunofenotipagem , Malária Falciparum/imunologia , Malária Vivax/imunologia , Monócitos/química , Multimerização Proteica
2.
Proc Natl Acad Sci U S A ; 108(9): 3689-94, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21303985

RESUMO

Excessive release of proinflammatory cytokines by innate immune cells is an important component of the pathogenic basis of malaria. Proinflammatory cytokines are a direct output of Toll-like receptor (TLR) activation during microbial infection. Thus, interference with TLR function is likely to render a better clinical outcome by preventing their aberrant activation and the excessive release of inflammatory mediators. Herein, we describe the protective effect and mechanism of action of E6446, a synthetic antagonist of nucleic acid-sensing TLRs, on experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA. We show that in vitro, low doses of E6446 specifically inhibited the activation of human and mouse TLR9. Tenfold higher concentrations of this compound also inhibited the human TLR8 response to single-stranded RNA. In vivo, therapy with E6446 diminished the activation of TLR9 and prevented the exacerbated cytokine response observed during acute Plasmodium infection. Furthermore, severe signs of ECM, such as limb paralysis, brain vascular leak, and death, were all prevented by oral treatment with E6446. Hence, we provide evidence that supports the involvement of nucleic acid-sensing TLRs in malaria pathogenesis and that interference with the activation of these receptors is a promising strategy to prevent deleterious inflammatory responses that mediate pathogenesis and severity of malaria.


Assuntos
Hidrocarbonetos Aromáticos/farmacologia , Malária Cerebral/prevenção & controle , Malária Cerebral/terapia , Ácidos Nucleicos/metabolismo , Receptores Toll-Like/antagonistas & inibidores , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Humanos , Hidrocarbonetos Aromáticos/química , Inflamação/complicações , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Malária Cerebral/induzido quimicamente , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/fisiologia , Choque Séptico/induzido quimicamente , Choque Séptico/complicações , Receptores Toll-Like/metabolismo
3.
Proc Natl Acad Sci U S A ; 106(14): 5789-94, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19297619

RESUMO

Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated "priming," we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNgamma-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9(-/-), IL12(-/-) and to a greater extent, IFNgamma(-/-) mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNgamma responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.


Assuntos
Imunidade Inata , Interferon gama/imunologia , Interleucina-12/imunologia , Malária/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Toll-Like/imunologia , Animais , Citocinas , Febre , Perfilação da Expressão Gênica , Humanos , Inflamação , Camundongos , Plasmodium chabaudi , Plasmodium falciparum , Sepse/parasitologia , Sepse/patologia , Receptor Toll-Like 9/imunologia , Receptores Toll-Like/genética , Fatores de Transcrição , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA