Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(8): 531, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34322768

RESUMO

Multivariate calibration based on partial least squares, random forest, and support vector machine methods, combined with the MissForest imputation algorithm, was used to understand the interaction between ozone and nitrogen oxides, carbon monoxide, wind speed, solar radiation, temperature, relative humidity, and others, the data of which were collected by air quality monitoring stations in the metropolitan area of Rio de Janeiro in four distinct sites between, 2014 and, 2018. These techniques provide an easy and feasible way of modeling and analyzing air pollutants and can be used when coupled with other methods. The results showed that random forest and support vector machine chemometric techniques can be used in modeling and predicting tropospheric ozone concentrations, with a coefficient of determination for making predictions up to 0.92, a root-mean square error of calibration between 4.66 and 27.15 µg m-3, and a root-mean square error of prediction between 4.17 and 22.45 µg m-3, depending on the air quality monitoring stations and season.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Brasil , Calibragem , Monitoramento Ambiental , Ozônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA