Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 14(6): 795-804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345286

RESUMO

Maternal obesity may trigger long-term neurodevelopmental disorders in offspring. Considering the benefits of the Brazil nut (Bertholletia excelsa H.B.K.), a rich source of nutrients such as selenium, this study aimed to evaluate its effect on the behavior of obese rat offspring and its relationship with oxidative stress. From 60 days of age until weaning, female Wistar rats were fed a high-fat diet (mHF) or an HF diet supplemented with 5% Brazil nut (mHF/BN), while control mothers (mCTL) were fed a standard diet or a standard diet supplemented with 5% Brazil nut (mBN). Male pups received a standard diet throughout life and, at 30 and 90 days old, were subjected to behavioral tasks to evaluate anxiety and cognition. Biochemical evaluations were performed at 90 days of age. No alterations were observed in the anxiety behavior of the offspring. However, the offspring of the mHF group (oHF) exhibited impaired short-term memory at 30 and 90 days of age and impaired long-term memory at 30 days. Short-term memory impairment was prevented by Brazil nuts in young rats (30 days). While the serum selenium concentration was reduced in the oHF group, the serum catalase concentration was reduced in all groups, without changes in lipid peroxidation or protein carbonylation. Brazil nut maternal diet supplementation prevented short- and long-term cognitive impairment in the offspring, which may be related to the selenium levels.


Assuntos
Bertholletia , Disfunção Cognitiva , Selênio , Humanos , Feminino , Masculino , Ratos , Animais , Gravidez , Ratos Wistar , Obesidade , Suplementos Nutricionais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Dieta Hiperlipídica/efeitos adversos
2.
J Endocrinol ; 255(1): 11-23, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904490

RESUMO

Herein, we assessed milk hormones, the biochemical composition of milk, and its association with neonatal body weight gain and metabolic homeostasis in weaned rats whose mothers were undernourished in the last third of pregnancy. From the 14th day of pregnancy until delivery, undernourished mothers had their food restricted by 50% (FR50), whereas control mothers were fed ad libitum. The litter size was adjusted to eight pups, and rats were weaned at 22 days old. Milk and blood from mothers, as well as blood and tissues from pups, were collected for further analyses. At birth, FR50 pups were smaller than control pups, and they exhibited hyperphagia and rapid catch-up growth during the suckling period. On day 12, the milk from FR50 mothers had higher energy content, glucose, total cholesterol, triglycerides, and acylated ghrelin but lower leptin and corticosterone levels. Interestingly, FR50 mothers were hypoglycemic and hyperleptinemic at the end of the nursing period. Weaned FR50 pups had an obese phenotype and exhibited insulin resistance, which was associated with hyperglycemia and hypertriglyceridemia; they also had high blood levels of total cholesterol, leptin, and acylated ghrelin. In addition, the protein expression of growth hormone secretagogue receptor (GHSR) in the hypothalamus was increased by almost 4-fold in FR50 pups. In summary, maternal calorie restriction during the last third of pregnancy disrupts energy and metabolic hormones in milk, induces pup hyperleptinemia and hyperghrelinemia, and upregulates their hypothalamic GHSR, thus suggesting that the hypothalamic neuroendocrine circuitry may be working to address the early onset of obesity.


Assuntos
Leptina , Desnutrição , Animais , Peso Corporal/fisiologia , Colesterol , Feminino , Grelina , Desnutrição/complicações , Leite , Obesidade , Gravidez , Ratos , Ratos Wistar
3.
Front Physiol ; 13: 787617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360231

RESUMO

A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic-pituitary-adrenal axis regulation of inflammatory response, activation of Th17 cells, renin-angiotensin-aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.

4.
J Nutr Biochem ; 99: 108857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520852

RESUMO

Nutritional insults early in life have been associated with metabolic diseases in adulthood. We aimed to evaluate the effects of maternal food restriction during the suckling period on metabolism and interscapular brown adipose tissue (iBAT) thermogenically involved proteins in adult rat offspring. Wistar rats underwent food restriction by 50% during the first two-thirds of lactation (FR50 group). Control rats were fed ad libitum throughout lactation (CONT group). At birth, the litter size was adjusted to eight pups, and weaning was performed at 22 days old. Body weight and food and water intake were assessed every two days. High- (HCD, 4,589 cal) and normal-caloric diet (NCD, 3,860 cal) preferences, as well as food intake during the dark part of the cycle, were assessed. At 100 days old, the rats were euthanized, and blood and tissues were removed for further analyses. Adult FR50 rats, although hyperphagic and preferring to eat HCD (P<.001), were leaner (P<.001) than the CONT group. The FR50 rats, were normoglycemic (P=.962) and had hypertriglyceridemia (P<.01). In addition, the FR50 rats were dyslipidemic (P<.01), presenting with a high atherogenic risk by the Castelli indexes (P<.01), had a higher iBAT mass (P<.01), fewer ß3 adrenergic receptors (ß3-AR, P<.05) and higher iBAT expression of uncoupled protein 1 (UCP1, P<.05) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, P<.001) than the CONT rats. In conclusion, maternal food restriction during early breastfeeding programs rat offspring to have a lean phenotype, despite hyperphagia, and increased iBAT UCP1 and PGC-1α protein expression.


Assuntos
Tecido Adiposo Marrom/metabolismo , Aleitamento Materno , Lactação/metabolismo , Termogênese , Magreza/metabolismo , Animais , Restrição Calórica , Metabolismo Energético , Feminino , Humanos , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Magreza/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149616

RESUMO

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Assuntos
Sistema Nervoso Autônomo/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Obesidade/tratamento farmacológico , Acetilcolina/farmacologia , Animais , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Neostigmina/farmacologia , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos Wistar , Receptor Muscarínico M3/metabolismo , Glutamato de Sódio , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
6.
Exp Physiol ; 105(12): 2051-2060, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33074581

RESUMO

NEW FINDINGS: What is the central question of this study? Studies reported the efficacy of metformin as a promising drug for preventing or treating of metabolic diseases. Nutrient stresses during neonatal life increase long-term risk for cardiometabolic diseases. Can early metformin treatment prevent the malprogramming effects of early overfeeding? What is the main finding and its importance? Neonatal metformin treatment prevented early overfeeding-induced metabolic dysfunction in adult rats. Inhibition of early hyperinsulinaemia and adult hyperphagia might be associated with decreased metabolic disease risk in these animals. Therefore, interventions during infant development offer a key area for future research to identify potential strategies to prevent the long-term metabolic diseases. We suggest that metformin is a potential tool for intervention. ABSTRACT: Given the need for studies investigating the possible long-term effects of metformin use at crucial stages of development, and taking into account the concept of metabolic programming, the present work aimed to evaluate whether early metformin treatment might program rats to resist the development of adult metabolic dysfunctions caused by overnutrition during the neonatal suckling phase. Wistar rats raised in small litters (SLs, three pups per dam) and normal litters (NLs, nine pups per dam) were used as models of early overfeeding and normal feeding, respectively. During the first 12 days of suckling, animals from SL and NL groups received metformin, whereas the controls received saline injections. Food intake and body weight were monitored from weaning until 90 days of age, when biometric and biochemical parameters were assessed. The metformin treatment decreased insulin concentrations in pups from SL groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, body weight gain, white fat pad stores and food intake. Low-glucose insulinotrophic effects were observed in pancreatic islets from both NL and SL groups. These results indicate that early postnatal treatment with metformin inhibits early overfeeding-induced metabolic dysfunctions in adult rats.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Metformina/farmacologia , Hipernutrição/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Leptina/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Hipernutrição/metabolismo , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
7.
Eur Endod J ; 5(2): 105-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766519

RESUMO

Objective: This study aimed to investigate the root canal system morphology of maxillary first molar mesiobuccal (MB) roots in a Brazilian sub-population using micro-computed tomography. Methods: Ninety-six MB roots were scanned with a micro-CT (Skyscan 1173, Bruker). Three-dimensional images were analyzed regarding the number of pulp chamber orifices, the number and classification of the canals, the presence of accessory canals in different thirds of the root as well as the number and type of apical foramina. Results: A single entrance orifice was found in 53.0% of the samples, two in 43.9% and only 3.1% had three orifices. The second mesiobuccal root canal (MB2) was present at some portion of the root in 87.5% of the specimens. A single apical foramen was present in 16.7%, two in 22.9%, and three or more foramina in 60.4% of the roots. Only 55.3% and 76.1% of the root canals could be arranged by Weine's and Vertucci's classifications, respectively. Conclusion: The number of orifices at the pulp chamber level could not work as a predictor of the MB2 presence. The most prevalent canal configuration was Weine type IV / Vertucci type V. The anatomical complexity of the MB root could not be entirely classified by the current most accepted classifications.


Assuntos
Cavidade Pulpar/diagnóstico por imagem , Imageamento Tridimensional/métodos , Maxila/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Raiz Dentária/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Brasil , Humanos , Ápice Dentário/diagnóstico por imagem
8.
J Dev Orig Health Dis ; 11(5): 484-491, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32249729

RESUMO

Currently, metabolic disorders are one of the major health problems worldwide, which have been shown to be related to perinatal nutritional insults, and the autonomic nervous system and endocrine pancreas are pivotal targets of the malprogramming of metabolic function. We aimed to assess glucose-insulin homeostasis and the involvement of cholinergic responsiveness (vagus nerve activity and insulinotropic muscarinic response) in pancreatic islet capacity to secrete insulin in weaned rat offspring whose mothers were undernourished in the first 2 weeks of the suckling phase. At delivery, dams were fed a low-protein (4% protein, LP group) or a normal-protein diet (20.5% protein, NP group) during the first 2 weeks of the suckling period. Litter size was adjusted to six pups per mother, and rats were weaned at 21 days old. Weaned LP rats presented a lean phenotype (P < 0.01); hypoglycaemia, hypoinsulinaemia and hypoleptinaemia (P < 0.05); and normal corticosteronaemia (P > 0.05). In addition, milk insulin levels in mothers of the LP rats were twofold higher than those of mothers of the NP rats (P < 0.001). Regarding glucose-insulin homeostasis, weaned LP rats were glucose-intolerant (P < 0.01) and displayed impaired pancreatic islet insulinotropic function (P < 0.05). The M3 subtype of the muscarinic acetylcholine receptor (M3mAChR) from weaned LP rats was less responsive, and the superior vagus nerve electrical activity was reduced by 30% (P < 0.01). A low-protein diet in the suckling period malprogrammes the vagus nerve to low tonus and impairs muscarinic response in the pancreatic ß-cells of weaned rats, which are imprinted to secrete inadequate insulin amounts from an early age.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Ilhotas Pancreáticas/embriologia , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Glicemia/análise , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Células Secretoras de Insulina , Ilhotas Pancreáticas/inervação , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiopatologia , Lactação/fisiologia , Masculino , Desnutrição/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Nervo Vago/fisiopatologia , Desmame
9.
Nutr Neurosci ; 23(6): 432-443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30187832

RESUMO

Objectives: We aimed to assess the effects of a maternal protein-caloric restriction diet during late pregnancy on the metabolism of rat offspring fed a high-fat diet (HFD) during adulthood.Methods: During late pregnancy, rat dams received either a low-protein (4%; LP group) or normoprotein (23%; NP group) diet. After weaning, the offspring were fed a standard diet (Control; C). Male offspring (60 days old) from both groups were then fed either the C diet or HFD until they were 90 days old. The adult offspring and maternal metabolic parameters and autonomic nervous system (ANS) were then evaluated.Results: Dams exhibited low body weight gain and food intake during the LP diet consumption. At lactation, these dams showed high body weight gain, hypoinsulinemia and hyperglycemia. The maternal LP diet resulted in low body weights for the pups. There were also no differences in the metabolic parameters between the adult LP offspring that were fed the C diet and the NP group. Adults of both groups that were fed the HFD developed obesity associated with altered insulin/ glucose homeostasis and altered ANS activity; however, the magnitudes of these parameters were higher in the LP group than in the NP group.Conclusions: Maternal protein malnutrition during the last third of pregnancy malprograms the metabolism of rat offspring, resulting in increased vulnerability to HFD-induced obesity, and the correlated metabolic impairment might be associated with lower sympathetic nerve activity in adulthood.


Assuntos
Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Complicações na Gravidez/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Wistar
10.
Metabolism ; 104: 154047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837301

RESUMO

The worldwide increase in metabolic diseases has urged the scientific community to improve our understanding about the mechanisms underlying its cause and effects. A well supported area of studies had related maternal stress with early programming to the later metabolic diseases. Mechanisms upon origins of metabolic disturbances are not yet fully understood, even though stressful factors rising glucocorticoids have been put out as pivotal trigger by programming metabolic diseases as long-term consequence. Considering energy balance and glucose homeostasis, by producing and/or sensing regulator signals, hypothalamus-pituitary-adrenal axis and endocrine pancreas are directly affected by glucocorticoids excess. We focus on the evidences reporting the role of increased glucocorticoids due to perinatal insults on the physiological systems involved in the metabolic homeostasis and in the target organs such as endocrine pancreas, white adipose tissue and blood vessels. Besides, we review some mechanisms underlining the malprogramming of type 2 diabetes, obesity and hypertension. Studies on this field are currently ongoing and even there is a good understanding regarding the effects of glucocorticoids addressing metabolic diseases, few is known about the relationship between maternal insults rising glucocorticoids to pups' metabolic disturbances, a thorough understanding about that may provide pivotal clinical clues regarding those disorders.


Assuntos
Desenvolvimento Fetal , Glucocorticoides/metabolismo , Doenças Metabólicas/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Hipertensão/metabolismo , Obesidade/metabolismo , Gravidez
11.
J Physiol ; 597(15): 3905-3925, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31210356

RESUMO

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Assuntos
Carcinoma 256 de Walker/terapia , Condicionamento Físico Animal/métodos , Animais , Caquexia/metabolismo , Caquexia/prevenção & controle , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/prevenção & controle , Células Cultivadas , Glucose/metabolismo , Resistência à Insulina , Masculino , Ratos , Ratos Wistar
12.
PLoS One ; 14(4): e0215396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998736

RESUMO

Hydrocarbons are important environmental pollutants, and the isolation and characterization of new microorganisms with the ability to degrade these compounds are important for effective biodegradation. In this work we isolated and characterized several bacterial isolates from compost, a substrate rich in microbial diversity. The isolates were obtained from selective culture medium containing n-hexadecane, aiming to recover alkane-degraders. Six isolates identified as Gordonia by MALDI-TOF and 16S rRNA sequencing had the ability to degrade n-hexadecane in three days. Two isolates were selected for genomic and functional characterization, Gordonia paraffinivorans (MTZ052) and Gordonia sihwensis (MTZ096). The CG-MS results showed distinct n-hexadecane degradation rates for MTZ052 and MTZ096 (86% and 100% respectively). The genome sequence showed that MTZ052 encodes only one alkane degrading gene cluster, the CYP153 system, while MTZ096 harbors both the Alkane Hydroxylase (AH) and the CYP153 systems. qPCR showed that both gene clusters are induced by the presence of n-hexadecane in the growth medium, suggesting that G. paraffinivorans and G. sihwensis use these systems for degradation. Altogether, our results indicate that these Gordonia isolates have a good potential for biotransformation of hydrocarbons.


Assuntos
Actinobacteria , Alcanos/metabolismo , Compostagem , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma Bacteriano
13.
Front Physiol ; 9: 465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867528

RESUMO

Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

14.
J Endocrinol ; 237(3): 243-254, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599416

RESUMO

We examined the long-term effects of protein restriction during puberty on the function of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in male rats. Male Wistar rats from the age of 30 to 60 days were fed a low-protein diet (4%, LP). A normal-protein diet (20.5%) was reintroduced to rats from the age of 60 to 120 days. Control rats were fed a normal-protein diet throughout life (NP). Rats of 60 or 120 days old were killed. Food consumption, body weight, visceral fat deposits, lipid profile, glycemia, insulinemia, corticosteronemia, adrenocorticotropic hormone (ACTH), testosteronemia and leptinemia were evaluated. Glucose-insulin homeostasis, pancreatic-islet insulinotropic response, testosterone production and hypothalamic protein expression of the androgen receptor (AR), glucocorticoid receptor (GR) and leptin signaling pathway were also determined. LP rats were hypophagic, leaner, hypoglycemic, hypoinsulinemic and hypoleptinemic at the age of 60 days (P < 0.05). These rats exhibited hyperactivity of the HPA axis, hypoactivity of the HPG axis and a weak insulinotropic response (P < 0.01). LP rats at the age of 120 days were hyperphagic and exhibited higher visceral fat accumulation, hyperleptinemia and dyslipidemia; lower blood ACTH, testosterone and testosterone release; and reduced hypothalamic expression of AR, GR and SOCS3, with a higher pSTAT3/STAT3 ratio (P < 0.05). Glucose-insulin homeostasis was disrupted and associated with hyperglycemia, hyperinsulinemia and increased insulinotropic response of the pancreatic islets. The cholinergic and glucose pancreatic-islet responses were small in 60-day-old LP rats but increased in 120-day-old LP rats. The hyperactivity of the HPA axis and the suppression of the HPG axis caused by protein restriction at puberty contributed to energy and metabolic disorders as long-term consequences.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Metabolismo Energético , Maturidade Sexual , Testosterona/metabolismo , Animais , Células Cultivadas , Proteínas Alimentares/farmacologia , Metabolismo Energético/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Maturidade Sexual/efeitos dos fármacos
15.
Eur J Nutr ; 57(2): 477-486, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27752755

RESUMO

PURPOSE: Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. METHODS: Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. RESULTS: MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in ß-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in ß-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. CONCLUSIONS: Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Dislipidemias/induzido quimicamente , Poluentes Ambientais/toxicidade , Lactação/efeitos dos fármacos , Exposição Materna/efeitos adversos , Obesidade/induzido quimicamente , Aldeído Pirúvico/toxicidade , Adiposidade/efeitos dos fármacos , Administração Oral , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/sangue , Dislipidemias/metabolismo , Dislipidemias/patologia , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/análise , Feminino , Insulina/análise , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Lactação/metabolismo , Masculino , Leite/química , Obesidade/sangue , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Aldeído Pirúvico/administração & dosagem , Aldeído Pirúvico/análise , Distribuição Aleatória , Ratos Sprague-Dawley , Toxicocinética , Aumento de Peso/efeitos dos fármacos
16.
Mol Plant Pathol ; 19(1): 143-157, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798950

RESUMO

Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies.


Assuntos
Membrana Celular/metabolismo , Proteínas Periplásmicas/metabolismo , Proteômica , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Modelos Biológicos , Proteoma/metabolismo
17.
Sci Rep ; 7(1): 7634, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794439

RESUMO

Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.


Assuntos
Obesidade/prevenção & controle , Hipernutrição , Condicionamento Físico Animal , Tecido Adiposo/anatomia & histologia , Animais , Animais Recém-Nascidos/anatomia & histologia , Glicemia , Peso Corporal , Modelos Animais de Doenças , Feminino , Lactação , Gravidez , Ratos
18.
Cell Physiol Biochem ; 42(3): 1087-1097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662504

RESUMO

BACKGROUND/AIMS: Trichilia catigua A. Juss., known as "catuaba" in Brazil, has been popularly used as a tonic for fatigue, impotence and memory deficits. Previously, our group demonstrated that the ethyl-acetate fraction (EAF) of T. catigua has antioxidant and anti-inflammatory effects. The present study evaluated the anti-diabetic activity of EAF in type 1 diabetic rats. METHODS: Male Wistar rats were divided into four groups (N: non-diabetic group, D: type 1 diabetic group, NC: non-diabetic + EAF group and DC: type 1 diabetic + EAF group). The latter two groups were treated with 200 mg/kg EAF. Type 1 diabetes was induced by intravenous streptozotocin (STZ) injection (35 mg/kg). Starting two days after STZ injection, EAF was administered daily by gavage for 8 weeks. RESULTS: EAF attenuated body mass loss and reduced food and water intake. EAF improved hyperglycaemia and other biochemical parameters, such as alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Furthermore, the number of pancreatic ß-cells and the size of the islets had increased by ß-cell proliferation in the DC group. EAF promoted reduction in kidney tissue damage in STZ-induced diabetic rats by reduction of renal fibrosis. CONCLUSION: The present study showed that EAF improves glucose homeostasis and endocrine pancreas morphology and inhibits the development of diabetic nephropathy in STZ-induced diabetic rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Meliaceae/química , Extratos Vegetais/uso terapêutico , Acetatos/química , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/patologia , Hipoglicemiantes/química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Extratos Vegetais/química , Ratos Wistar
19.
Cell Physiol Biochem ; 42(1): 81-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528338

RESUMO

BACKGROUND/AIMS: The sulphonylurea glibenclamide (Gli) is widely used in the treatment of type 2 diabetes. In addition to its antidiabetic effects, low incidences of certain types of cancer have been observed in Gli-treated diabetic patients. However, the mechanisms underlying this observation remain unclear. The aim of the present work was to evaluate whether obese adult rats that were chronically treated with an antidiabetic drug, glibenclamide, exhibit resistance to rodent breast carcinoma growth. METHODS: Neonatal rats were treated with monosodium L-glutamate (MSG) to induce prediabetes. Control and MSG groups were treated with Gli (2 mg/kg body weight/day) from weaning to 100 days old. After Gli treatment, the control and MSG rats were grafted with Walker-256 tumour cells. After 14 days, grafted rats were euthanized, and tumour weight as well as glucose homeostasis were evaluated. RESULTS: Treatment with Gli normalized tissue insulin sensitivity and glucose tolerance, suppressed fasting hyperinsulinaemia, reduced fat tissue accretion in MSG rats, and attenuated tumour growth by 27% in control and MSG rats. CONCLUSIONS: Gli treatment also resulted in a large reduction in the number of PCNA-positive tumour cells. Although treatment did improve the metabolism of pre-diabetic MSG-rats, tumour growth inhibition may be a more direct effect of glibenclamide.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glibureto/farmacologia , Estado Pré-Diabético/prevenção & controle , Animais , Caquexia/etiologia , Linhagem Celular Tumoral , Glucose/metabolismo , Glibureto/uso terapêutico , Hiperinsulinismo/prevenção & controle , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Imuno-Histoquímica , Masculino , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Estado Pré-Diabético/etiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Wistar , Glutamato de Sódio/toxicidade
20.
Endocrine ; 55(1): 101-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27116693

RESUMO

Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F2) (CTLF2), MSG-treated second generation (F2) (MSGF2), which suckled from their CTL and MSG biological dams, respectively, or CTLF2-CR, control offspring suckled by MSG dams and MSGF2-CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.


Assuntos
Modelos Animais de Doenças , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal , Adiposidade , Animais , Animais Recém-Nascidos , Feminino , Desenvolvimento Fetal , Aromatizantes/administração & dosagem , Aromatizantes/efeitos adversos , Aditivos Alimentares/administração & dosagem , Aditivos Alimentares/efeitos adversos , Injeções Subcutâneas , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Gravidez , Ratos Wistar , Glutamato de Sódio/administração & dosagem , Glutamato de Sódio/efeitos adversos , Técnicas de Cultura de Tecidos , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA