Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 53(6): 524, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705124

RESUMO

Whole genome sequencing of bovine breeds has allowed identification of genetic variants in milk protein genes. However, functional repercussion of such variants at a molecular level has seldom been investigated. Here, the results of a multistep Bioinformatic analysis for functional characterization of recently identified genetic variants in Brazilian Gyr and Guzerat breeds is described, including predicted effects on the following: (i) evolutionary conserved nucleotide positions/regions; (ii) protein function, stability, and interactions; (iii) splicing, branching, and miRNA binding sites; (iv) promoters and transcription factor binding sites; and (v) collocation with QTL. Seventy-one genetic variants were identified in the caseins (CSN1S1, CSN2, CSN1S2, and CSN3), LALBA, LGB, and LTF genes. Eleven potentially regulatory variants and two missense mutations were identified. LALBA Ile60Val was predicted to affect protein stability and flexibility, by reducing the number the disulfide bonds established. LTF Thr546Asn is predicted to generate steric clashes, which could mildly affect iron coordination. In addition, LALBA Ile60Val and LTF Thr546Asn affect exonic splicing enhancers and silencers. Consequently, both mutations have the potential of affecting immune response at individual level, not only in the mammary gland. Although laborious, this multistep procedure for classifying variants allowed the identification of potentially functional variants for milk protein genes.


Assuntos
Caseínas , Proteínas do Leite , Animais , Bovinos/genética , Simulação por Computador , Mutação , Regiões Promotoras Genéticas
2.
BMC Microbiol ; 17(1): 42, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228107

RESUMO

BACKGROUND: Fungi are among the most abundant and diverse organisms on Earth. However, a substantial amount of the species diversity, relationships, habitats, and life strategies of these microorganisms remain to be discovered and characterized. One important factor hindering progress is the difficulty in correctly identifying fungi. Morphological and molecular characteristics have been applied in such tasks. Later, DNA barcoding has emerged as a new method for the rapid and reliable identification of species. The nrITS region is considered the universal barcode of Fungi, and the ITS1 and ITS2 sub-regions have been applied as metabarcoding markers. In this study, we performed a large-scale analysis of all the available Basidiomycota sequences from GenBank. We carried out a rigorous trimming of the initial dataset based in methodological principals of DNA Barcoding. Two different approaches (PCI and barcode gap) were used to determine the performance of the complete ITS region and sub-regions. RESULTS: For most of the Basidiomycota genera, the three genomic markers performed similarly, i.e., when one was considered a good marker for the identification of a genus, the others were also; the same results were observed when the performance was insufficient. However, based on barcode gap analyses, we identified genomic markers that had a superior identification performance than the others and genomic markers that were not indicated for the identification of some genera. Notably, neither the complete ITS nor the sub-regions were useful in identifying 11 of the 113 Basidiomycota genera. The complex phylogenetic relationships and the presence of cryptic species in some genera are possible explanations of this limitation and are discussed. CONCLUSIONS: Knowledge regarding the efficiency and limitations of the barcode markers that are currently used for the identification of organisms is crucial because it benefits research in many areas. Our study provides information that may guide researchers in choosing the most suitable genomic markers for identifying Basidiomycota species.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , DNA Espaçador Ribossômico/genética , Marcadores Genéticos/genética , Filogenia , Basidiomycota/classificação , Biodiversidade , DNA Fúngico , Bases de Dados de Ácidos Nucleicos , Fungos/genética , Genes Fúngicos/genética , Tipagem Molecular/métodos , Técnicas de Tipagem Micológica/métodos , RNA Fúngico/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA