Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 368(12)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100915

RESUMO

The first line of the Arthropods defense against infections is the hard-structured exoskeleton, a physical barrier, usually rich in insoluble chitin. For entomopathogenic fungi that actively penetrate the host body, an arsenal of hydrolytic enzymes (as chitinases and N-acetylglucosaminidases), that break down chitin, is essential. Notably, twenty-one putative chitinase genes have been identified in the genome of Metarhizium anisopliae, a generalist entomopathogenic fungus. As a multigenic family, with enzymes that, presumably, perform redundant functions, the main goal is to understand the singularity of each one of such genes and to discover their precise role in the fungal life cycle. Specially chitinases that can act as virulence determinants are of interest since these enzymes can lead to more efficient biocontrol agents. Here we explored a horizontally acquired chitinase from M. anisopliae, named chiMaD1. The deletion of this gene did not lead to phenotypic alterations or diminished supernatant's chitinolytic activity. Surprisingly, chiMaD1 deletion enhanced M. anisopliae virulence to the cattle tick (Rhipicephalus microplus) larvae and engorged females, while did not alter the virulence to the mealworm larvae (Tenebrio molitor). These results add up to recent reports of deleted genes that enhanced entomopathogenic virulence, showing the complexity of host-pathogen interactions.


Assuntos
Quitinases/genética , Proteínas Fúngicas/genética , Metarhizium/patogenicidade , Rhipicephalus/microbiologia , Animais , Quitina/metabolismo , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Larva/microbiologia , Metarhizium/classificação , Metarhizium/enzimologia , Metarhizium/genética , Controle Biológico de Vetores , Filogenia , Tenebrio/microbiologia , Virulência
2.
Bioresour Technol ; 101(1): 268-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19700311

RESUMO

The production of lipase by twenty-nine yeasts isolated from the phylloplane of Hibiscus rosa-sinensis was evaluated. The highest lipase producers were Pseudozyma hubeiensis HB85A, Debaryomyces occidentalis-like HB83 and Cryptococcus sp. HB80. P. hubeiensis HB85A batch fermentations were carried out in a bioreactor and lipase production improved 3.2-fold as compared to flask submerged cultures. The production process was significantly reduced from 48 h (in flasks) to 18 h (in the bioreactor). The better hydrolytic activity was achieved with C16 p-nitrophenyl ester. Maximal activity was observed at pH 7.0, the optimum temperature was 50 degrees C at pH 7.0 and the enzyme was stable at 30 and 40 degrees C. The lipolytic activity was stimulated by Mg(2+), K(+) and Ba(2+) salts and EDTA and slightly inhibited by Ca(2+) salts. Non-ionic detergents such as Triton X-100, Tween 80 and Tween 20 strongly stimulated lipase activity, whereas SDS inhibited it. The lipase was stable in iso-octane and hexane at 80%.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Bactérias Aeróbias/metabolismo , Reatores Biológicos/microbiologia , Lipase/isolamento & purificação , Lipase/metabolismo , Bactérias Aeróbias/classificação , Fermentação , Projetos Piloto , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA