Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Lipid Res ; 65(9): 100618, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127170

RESUMO

Unsaturated fatty acids (UFA) play a crucial role in central cellular processes in animals, including membrane function, development, and disease. Disruptions in UFA homeostasis can contribute to the onset of metabolic, cardiovascular, and neurodegenerative disorders. Consequently, there is a high demand for analytical techniques to study lipid compositions in live cells and multicellular organisms. Conventional analysis of UFA compositions in cells, tissues, and organisms involves solvent extraction procedures coupled with analytical techniques such as gas chromatography, MS and/or NMR spectroscopy. As a nondestructive and nontargeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profiling of living cells and multicellular organisms. Here, we use NMR spectroscopy to analyze Caenorhabditis elegans, enabling the determination of their lipid compositions and fatty acid unsaturation levels both in cell-free lipid extracts and in vivo. The NMR spectra of lipid extracts from WT and fat-3 mutant C. elegans strains revealed notable differences due to the absence of Δ-6 fatty acid desaturase activity, including the lack of arachidonic and eicosapentaenoic acyl chains. Uniform 13C-isotope labeling and high-resolution 2D solution-state NMR of live worms confirmed these findings, indicating that the signals originated from fast-tumbling lipid molecules within lipid droplets. Overall, this strategy permits the analysis of lipid storage in intact worms and has enough resolution and sensitivity to identify differences between WT and mutant animals with impaired fatty acid desaturation. Our results establish methodological benchmarks for future investigations of fatty acid regulation in live C. elegans using NMR.


Assuntos
Caenorhabditis elegans , Ácidos Graxos Insaturados , Animais , Caenorhabditis elegans/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/análise , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Lipídeos/análise , Lipídeos/química
2.
Glia ; 72(10): 1746-1765, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856177

RESUMO

Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Astrócitos , Canabinoides , Colesterol , Lisossomos , Neurônios , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Animais , Colesterol/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Canabinoides/farmacologia , Canabinoides/metabolismo , Células Cultivadas , Proteína C1 de Niemann-Pick , Camundongos , Envelhecimento/metabolismo , Técnicas de Cocultura , Camundongos Endogâmicos C57BL
3.
PLoS Genet ; 18(11): e1010346, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346800

RESUMO

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway.


Assuntos
Caenorhabditis elegans , Canabinoides , Animais , Caenorhabditis elegans/genética , Colesterol/genética , Esteróis , Insulina
5.
Biomolecules ; 11(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201916

RESUMO

DesK is a Histidine Kinase that allows Bacillus subtilis to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify. In this research, we study how transmembrane inter-helical interactions contribute to signal transmission; we designed a co-expression system that allows studying in vivo interactions between transmembrane helices. By Alanine-replacements, we identified a group of polar uncharged residues, whose side chains contain hydrogen-bond donors or acceptors, which are required for the interaction with other DesK transmembrane helices; a particular array of H-bond- residues plays a key role in signaling, transmitting information detected at the membrane level into the cell to finally trigger an adaptive response.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Transporte Proteico/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Histidina Quinase/química , Ligação de Hidrogênio
6.
Front Mol Biosci ; 7: 592747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324680

RESUMO

Temperature is a crucial variable that every living organism, from bacteria to humans, need to sense and respond to in order to adapt and survive. In particular, pathogenic bacteria exploit host-temperature sensing as a cue for triggering virulence gene expression. Here, we have identified and characterized two integral membrane thermosensor histidine kinases (HKs) from Gram-positive pathogens that exhibit high similarity to DesK, the extensively characterized cold sensor histidine kinase from Bacillus subtilis. Through in vivo experiments, we demonstrate that SA1313 from Staphylococcus aureus and BA5598 from Bacillus anthracis, which likely control the expression of putative ATP binding cassette (ABC) transporters, are regulated by environmental temperature. We show here that these HKs can phosphorylate the non-cognate response regulator DesR, partner of DesK, both in vitro and in vivo, inducing in B. subtilis the expression of the des gene upon a cold shock. In addition, we report the characterization of another DesK homolog from B. subtilis, YvfT, also closely associated to an ABC transporter. Although YvfT phosphorylates DesR in vitro, this sensor kinase can only induce des expression in B. subtilis when overexpressed together with its cognate response regulator YvfU. This finding evidences a physiological mechanism to avoid cross talk with DesK after a temperature downshift. Finally, we present data suggesting that the HKs studied in this work appear to monitor different ranges of membrane lipid properties variations to mount adaptive responses upon cooling. Overall, our findings point out that bacteria have evolved sophisticated mechanisms to assure specificity in the response to environmental stimuli. These findings pave the way to understand thermosensing mediated by membrane proteins that could have important roles upon host invasion by bacterial pathogens.

7.
J Biol Chem ; 295(44): 14973-14986, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32843480

RESUMO

Lipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms. We envisioned that the development of an organismal model system might provide new opportunities to interrogate LA biochemistry, biology, and physiology. Here we report our investigations on three Caenorhabditis elegans orthologous proteins involved in this post-translational modification. We established that M01F1.3 is a lipoyl synthase, ZC410.7 an octanoyltransferase, and C45G3.3 an amidotransferase. Worms subjected to RNAi against M01F1.3 and ZC410.7 manifest larval arrest in the second generation. The arrest was not rescued by LA supplementation, indicating that endogenous synthesis of LA is essential for C. elegans development. Expression of the enzymes M01F1.3, ZC410.7, and C45G3.3 completely rescue bacterial or yeast mutants affected in different steps of the lipoylation pathway, indicating functional overlap. Thus, we demonstrate that, similarly to humans, C. elegans is able to synthesize LA de novo via a lipoyl-relay pathway, and suggest that this nematode could be a valuable model to dissect the role of protein mislipoylation and to develop new therapies.


Assuntos
Caenorhabditis elegans/metabolismo , Modelos Biológicos , Ácido Tióctico/metabolismo , Animais , Bacillus subtilis/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético , Escherichia coli/genética , Ácidos Graxos/biossíntese , Lipoilação , Neurônios/metabolismo , Interferência de RNA , Ácido Tióctico/genética
8.
Mol Microbiol ; 114(4): 653-663, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671874

RESUMO

A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.


Assuntos
Bacillus subtilis/metabolismo , Ácidos Graxos/biossíntese , Fosfolipídeos/biossíntese , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Lipogênese , Fosfolipídeos/metabolismo , Regulon
9.
J Biol Chem ; 295(7): 2148-2159, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919098

RESUMO

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.


Assuntos
Proteínas de Bactérias/genética , Redes e Vias Metabólicas/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipídeos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/genética , Ácidos Fosfatídicos/genética , Fosfolipídeos/genética
10.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772055

RESUMO

Environmental awareness is an essential attribute of all organisms. The homeoviscous adaptation system of Bacillus subtilis provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense the order of membrane lipids with the transmembrane (TM) protein DesK, which has an N-terminal sensor domain and an intracellular catalytic effector domain. DesK exhibits autokinase activity as well as phosphotransferase and phosphatase activities toward a cognate response regulator, DesR, that controls the expression of an enzyme that remodels membrane fluidity when the temperature drops below ∼30°C. Membrane fluidity signals are transmitted from the DesK sensor domain to the effector domain via rotational movements of a connecting 2-helix coiled coil (2-HCC). Previous molecular dynamic simulations suggested important roles for TM prolines in transducing the initial signals of membrane fluidity status to the 2-HCC. Here, we report that individual replacement of prolines in DesKs TM1 and TM5 helices by alanine (DesKPA) locked DesK in a phosphatase-ON state, abrogating membrane fluidity responses. An unbiased mutagenic screen identified the L174P replacement in the internal side of the repeated heptad of the 2-HCC structure that alleviated the signaling defects of every transmembrane DesKPA substitution. Moreover, substitutions by proline in other internal positions of the 2-HCC reestablished the kinase-ON state of the DesKPA mutants. These results imply that TM prolines are essential for finely tuned signal generation by the N-terminal sensor helices, facilitating a conformational control by the metastable 2-HCC domain of the DesK signaling state.IMPORTANCE Signal sensing and transduction is an essential biological process for cell adaptation and survival. Histidine kinases (HK) are the sensory proteins of two-component systems that control many bacterial responses to different stimuli, like environmental changes. Here, we focused on the HK DesK from Bacillus subtilis, a paradigmatic example of a transmembrane thermosensor suited to remodel membrane fluidity when the temperature drops below 30°C. DesK provides a tractable system for investigating the mechanism of transmembrane signaling, one of the majors interrogates in biology to date. Our studies demonstrate that transmembrane proline residues modulate the conformational switch of a 2-helix coiled-coil (2-HCC) structural motif that controls input-output in a variety of HK. Our results highlight the relevance of proline residues within sensor domains and could inspire investigations of their role in different signaling proteins.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Histidina Quinase/química , Histidina Quinase/metabolismo , Prolina/metabolismo , Motivos de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Histidina Quinase/genética , Fluidez de Membrana , Domínios Proteicos
11.
Microbiology (Reading) ; 165(1): 90-101, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431418

RESUMO

Two component systems, composed of a receptor histidine kinase and a cytoplasmic response regulator, regulate pivotal cellular processes in microorganisms. Here we describe a new screening procedure for the identification of amino acids that are crucial for the functioning of DesK, a prototypic thermosensor histidine kinase from Bacillus subtilis. This experimental strategy involves random mutagenesis of the membrane sensor domain of the DesK coding sequence, followed by the use of a detection procedure based on changes in the colony morphogenesis that take place during the sporulation programme of B. subtilis. This method permitted us the recovery of mutants defective in DesK temperature sensing. This screening approach could be applied to all histidine kinases of B. subtilis and also to kinases of other bacteria that are functionally expressed in this organism. Moreover, this reporter assay could be expanded to develop reporter assays for a variety of transcriptionally regulated systems.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus subtilis/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mutagênese , Mutação , Temperatura
12.
J Lipid Res ; 59(10): 1871-1879, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30087203

RESUMO

Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.


Assuntos
Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Membrana Celular/metabolismo , Ácidos Graxos Dessaturases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fases de Leitura Aberta/genética , Domínios Proteicos , Homologia de Sequência de Aminoácidos
13.
Sci Rep ; 8(1): 6398, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686301

RESUMO

Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-ß mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.


Assuntos
Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Endocanabinoides/metabolismo , Homeostase , Animais , Ácido Araquidônico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Ácidos Graxos Insaturados/metabolismo , Larva/metabolismo , Mutação
15.
Mol Microbiol ; 103(4): 698-712, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27875634

RESUMO

The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp-synthetases (RelBs , RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Ácidos Graxos/metabolismo , Guanosina Trifosfato/metabolismo , Ligases/genética , Potenciais da Membrana/fisiologia , Inanição/metabolismo , Cerulenina/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Estresse Fisiológico
16.
Front Mol Biosci ; 3: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766255

RESUMO

Phospholipids and fatty acids are not only one of the major components of cell membranes but also important metabolic intermediates in bacteria. Since the fatty acid biosynthetic pathway is essential and energetically expensive, organisms have developed a diversity of homeostatic mechanisms to fine-tune the concentration of lipids at particular levels. FapR is the first global regulator of lipid synthesis discovered in bacteria and is largely conserved in Gram-positive organisms including important human pathogens, such as Staphylococcus aureus, Bacillus anthracis, and Listeria monocytogenes. FapR is a transcription factor that negatively controls the expression of several genes of the fatty acid and phospholipid biosynthesis and was first identified in Bacillus subtilis. This review focuses on the genetic, biochemical and structural advances that led to a detailed understanding of lipid homeostasis control by FapR providing unique opportunities to learn how Gram-positive bacteria monitor the status of fatty acid biosynthesis and adjust the lipid synthesis accordingly. Furthermore, we also cover the potential of the FapR system as a target for new drugs against Gram-positive bacteria as well as its recent biotechnological applications in diverse organisms.

17.
J Bacteriol ; 198(21): 2945-2954, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528507

RESUMO

Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. IMPORTANCE: The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur as a consequence of temperature changes and activates a pathway to restore membrane fluidity at low temperature. Here, we demonstrated that membrane thickness variations do occur at physiological temperatures by directly measuring Bacillus lipid membrane thickness. We also dissected the N-terminal sensing motif of MS-DesK at the molecular-biophysical level and found that the dyad phenylalanine-lysine at the water-lipid phase is critical for achievement of a fine-tuned sensitivity to temperature.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Proteínas Quinases/metabolismo , Motivos de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Temperatura
18.
Mol Microbiol ; 100(4): 621-34, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26816052

RESUMO

PlsX is a central enzyme of phospholipid synthesis in bacteria, converting acyl-ACP to acyl-phosphate on the pathway to phosphatidic acid formation. PlsX has received attention because it plays a key role in the coordination of fatty acid and phospholipid synthesis. Recently, PlsX was also suggested to coordinate membrane synthesis with cell division in Bacillus subtilis. Here, we have re-investigated the cell biology of PlsX and determined that the enzyme is uniformly distributed on the membrane of most cells, but occasionally appears as membrane foci as well. Foci and homogenous patterns seem freely interconvertible but the prevalence of the uniform staining suggests that PlsX does not need to localize to specific sites to function correctly. We also investigated the relationship between PlsX and the divisome. In contrast to previous observations, PlsX's foci showed no obvious periodicity of localization and did not colocalize with the divisome. Furthermore, depletion of PlsX did not affect cell division if phospholipid synthesis is maintained by an alternative enzyme. These results suggest that coordination between division and membrane synthesis may not require physical or functional interactions between the divisome and phospholipid synthesis enzymes.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Divisão Celular , Fosfolipídeos/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Ácidos Graxos/metabolismo , Fosfatos/metabolismo , Fosfolipídeos/metabolismo
19.
Biochim Biophys Acta ; 1861(8 Pt B): 837-846, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26776056

RESUMO

The lipid bilayer component of biological membranes is important for the distribution, organization, and function of bilayer spanning proteins. These physical barriers are subjected to bilayer perturbations. As a consequence, nature has evolved proteins that are able to sense changes in the bilayer properties and transform these lipid-mediated stimuli into intracellular signals. A structural feature that most signal-transducing membrane-embedded proteins have in common is one or more α-helices that traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to membrane properties, like hydrophobic thickness. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane proteins. We review recent insights into the molecular basis of thermosensing via changes in membrane thickness and consider examples in which the hydrophobic matching can be demonstrated using reconstituted membrane systems. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Assuntos
Resposta ao Choque Frio/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/fisiologia , Lipídeos de Membrana/metabolismo , Animais , Humanos , Lipídeos de Membrana/química , Membranas/metabolismo , Transdução de Sinais/fisiologia , Sensação Térmica/fisiologia
20.
Mol Microbiol ; 98(2): 258-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26172072

RESUMO

The thermosensor histidine kinase DesK from Bacillus subtilis senses changes in membrane fluidity initiating an adaptive response. Structural changes in DesK have been implicated in transmembrane signaling, but direct evidence is still lacking. On the basis of structure-guided mutagenesis, we now propose a mechanism of DesK-mediated signal sensing and transduction. The data indicate that stabilization/destabilization of a 2-helix coiled coil, which connects the transmembrane sensory domain of DesK to its cytosolic catalytic region, is crucial to control its signaling state. Computational modeling and simulations reveal couplings between protein, water and membrane mechanics. We propose that membrane thickening is the main driving force for signal sensing and that it acts by inducing helix stretching and rotation prompting an asymmetric kinase-competent state. Overall, the known structural changes of the sensor kinase, as well as further dynamic rearrangements that we now predict, consistently link structure determinants to activity modulation.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transdução de Sinais , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Membrana Celular/metabolismo , Temperatura Baixa , Simulação por Computador , Histidina Quinase , Fluidez de Membrana , Proteínas de Membrana/metabolismo , Mutagênese , Conformação Proteica , Proteínas Quinases/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA