Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 100(21): 9133-9144, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27245677

RESUMO

Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors. The purified AtXEG12 showed optimum pH and temperature of 5.5 and 65 °C, respectively, demonstrating to be 90 % stable after 24 h of incubation at 50 °C. AtXEG12 activity increased in the presence of 2-mercaptoethanol (65 %) and Zn+2 (45 %), while Cu+2 and Ag+ ions drastically decreased its activity. A substrate assay showed, for the first time for this enzyme's family, xylanase activity. The enzyme exhibited high specificity for tamarind xyloglucan (K M 1.2 mg mL-1) and V max of 17.4 µmol min-1 mg-1 of protein. The capillary zone electrophoresis analysis revealed that AtXEG12 is an endo-xyloglucanase. The heterologous xyloglucanase secretion was greater than the production by wild-type A. terreus cultivated in SmF. On the other hand, AtXEG12 activity reached by SSF was sevenfold higher than values achieved by SmF, showing that the expression of recombinant enzymes can be significantly improved by cultivation under SSF.


Assuntos
Aspergillus/enzimologia , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Proteínas Recombinantes/metabolismo , Reatores Biológicos/microbiologia , Clonagem Molecular , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Fermentação , Expressão Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Tamarindus/química , Temperatura
2.
Yeast ; 31(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155051

RESUMO

The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-ß-D-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated inhibition of N-linked glycosylation on α- and ß-(1,3)-glucanases and on α-(1,4)-amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α- or ß-(1,3)-glucanase production and secretion. Moreover, incubation with TM did not alter α- and ß-(1,3)-glucanase activity in yeast and mycelium cell extracts. In contrast, α-(1,4)-amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N-glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N-glycans were essential for α-(1,4)-amylase activity involved in the production of malto-oligosaccharides that act as primer molecules for the biosynthesis of α-(1,3)-glucan. Our results suggest that reduced fungal α-(1,4)-amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells.


Assuntos
Anti-Infecciosos/farmacologia , Glucana 1,3-beta-Glucosidase/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Tunicamicina/farmacologia , alfa-Amilases/metabolismo , Paracoccidioides/citologia , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia
3.
Appl Biochem Biotechnol ; 160(5): 1496-507, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19484410

RESUMO

An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K(m) and V(max) values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 micromol/min/mg, respectively. PG was found to have temperature optimum at 65 degrees Celsius and was totally stable at 45 degrees Celsius for 90 min. Half-life at 55 degrees Celsius was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na(+1), K(+1), and Co(+2) (1 mM) and Cu(+2) (1 and 10 mM).


Assuntos
Técnicas de Cultura de Células/métodos , Espaço Extracelular/enzimologia , Paecilomyces/enzimologia , Poligalacturonase/isolamento & purificação , Poligalacturonase/metabolismo , Cátions , Cromatografia em Camada Fina , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Ponto Isoelétrico , Cinética , Metais/farmacologia , Peso Molecular , Paecilomyces/efeitos dos fármacos , Pectinas/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA