Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9225, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655075

RESUMO

This study aimed to propose an eco-compatible strategy to mitigate the possible environmental contamination caused by tebuthiuron. Therefore, we screened potential tebuthiuron-degrading microorganisms from conventional (CS) and no-till (NTS) systems producing sugarcane. Then, they were bioprospected for their ability of decomposing the target-molecule at 2.48 mmol g-1 and 4.96 mmol g-1 into CO2 via respirometry. Integrating microbiota from CS and NTS into an advantageously synergistic bacterial pool produced the highest specific-growth rate of CO2 of 89.60 mg day-1, so outstripped the other inoculum. The bacterial CN-NTS framework notably stabilized the sigmoidal Gompertz curve on microbial degradation earliest and enabled the seeds of Lactuca sativa to germinate healthiest throughout ecotoxicological bioassay for cross-validation. Our study is preliminary, but timely to provide knowledge of particular relevance to progress in the field's prominence in remediating terrestrial ecosystems where residual tebuthiuron can persist and contaminate. The analytical insights will act as an opening of solutions to develop high-throughput biotechnological strategies for environmental decontamination.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/metabolismo , Dióxido de Carbono , Compostos de Metilureia , Solo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA