Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 109: 131-143, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28735040

RESUMO

Considering that tumor development is generally multifactorial, therapy with a combination of agents capable of potentiating cytotoxic effects is promising. In this study, we co-encapsulated C6 ceramide (0.35%) and paclitaxel (0.50%) in micro and nanoemulsions containing tributyrin (a butyric acid pro-drug included for potentiation of cytotoxicity), and compared their ability to co-localize the drugs in viable skin layers. The nanoemulsion delivered 2- and 2.4-fold more paclitaxel into viable skin layers of porcine skin in vitro at 4 and 8h post-application than the microemulsion, and 1.9-fold more C6 ceramide at 8h. The drugs were co-localized mainly in the epidermis, suggesting the nanoemulsion ability for a targeted delivery. Based on this result, the nanoemulsion was selected for evaluation of the nanocarrier-mediated cytotoxicity against cells in culture (2D model) and histological changes in a 3D melanoma model. Encapsulation of the drugs individually decreased the concentration necessary to reduce melanoma cells viability to 50% (EC50) by approximately 4- (paclitaxel) and 13-fold (ceramide), demonstrating an improved nanoemulsion-mediated drug delivery. Co-encapsulation of paclitaxel and ceramide further decreased EC50 by 2.5-4.5-fold, and calculation of the combination index indicated a synergistic effect. Nanoemulsion topical administration on 3D bioengineered melanoma models for 48h promoted marked epidermis destruction, with only few cells remaining in this layer. This result demonstrates the efficacy of the nanoemulsion, but also suggests non-selective cytotoxic effects, which highlights the importance of localizing the drugs within cutaneous layers where the lesions develop to avoid adverse effects.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Ceramidas/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Triglicerídeos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/química , Portadores de Fármacos/química , Emulsões , Melanoma/tratamento farmacológico , Nanopartículas/química , Paclitaxel/química , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Suínos , Triglicerídeos/química
2.
AAPS PharmSciTech ; 18(5): 1739-1749, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27757922

RESUMO

In this study, non-aqueous microemulsions were developed because of the challenges associated with finding pharmaceutically acceptable solvents for topical delivery of drugs sparingly soluble in water. The formulation irritation potential and ability to modulate the penetration of lipophilic compounds (progesterone, α-tocopherol, and lycopene) of interest for topical treatment/prevention of skin disorders were evaluated and compared to solutions and aqueous microemulsions of similar composition. The microemulsions (ME) were developed with BRIJ, vitamin E-TPGS, and ethanol as surfactant-co-surfactant blend and tributyrin, isopropyl myristate, and oleic acid as oil phase. As polar phase, propylene glycol (MEPG) or water (MEW) was used (26% w/w). The microemulsions were isotropic and based on viscosity and conductivity assessment, bicontinuous. Compared to drug solutions in lipophilic vehicles, MEPG improved drug delivery into viable skin layers by 2.5-38-fold; the magnitude of penetration enhancement mediated by MEPG into viable skin increased with drug lipophilicity, even though the absolute amount of drug delivered decreased. Delivery of progesterone and tocopherol, but not lycopene (the most lipophilic compound), increased up to 2.5-fold with MEW, and higher amounts of these two drugs were released from MEW (2-2.5-fold). Both microemulsions were considered safe for topical application, but MEPG-mediated decrease in the viability of reconstructed epidermis was more pronounced, suggesting its higher potential for irritation. We conclude that MEPG is a safe and suitable nanocarrier to deliver a variety of lipophilic drugs into viable skin layers, but the use of MEW might be more advantageous for drugs in the lower range of lipophilicity.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Absorção Cutânea/efeitos dos fármacos , Tensoativos/administração & dosagem , Administração Cutânea , Administração Tópica , Animais , Carotenoides/administração & dosagem , Carotenoides/metabolismo , Emulsões/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/administração & dosagem , Licopeno , Propilenoglicol/administração & dosagem , Propilenoglicol/metabolismo , Pele/metabolismo , Absorção Cutânea/fisiologia , Tensoativos/metabolismo , Suínos , Viscosidade , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/metabolismo
3.
Curr Pharm Des ; 21(20): 2814-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25925116

RESUMO

The skin presents several advantages as an administration route, including the possibility of localizing drugs in the tissue and overcoming the first-pass effect. However, its use is limited by the barrier function of the tissue, which is provided mainly (but not exclusively) by the stratum corneum. Various strategies to overcome this layer, have been considered over the years, ranging from the use of physical methods such as iontophoresis to wellknown conventional chemical penetration enhancers like oleic acid and DMSO. However, delivery of hydrophilic and large compounds remains a challenge. More recently, selected groups of peptides have attracted increasing attention due to their ability to penetrate into the skin promoting the transport of small and large molecules, including nanodispersed systems. Here, we will discuss the properties and application to cutaneous (into the skin) and transdermal (across the skin) delivery of three groups of peptides, namely protein-transduction domains, phage-displayed peptides and antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Biblioteca de Peptídeos , Preparações Farmacêuticas/administração & dosagem , Pele/metabolismo , Administração Cutânea , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Permeabilidade , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA