Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Syst Neurosci ; 13: 63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780904

RESUMO

Evidence suggests that the pathophysiology associated with epileptic susceptibility may disturb the functional connectivity of neural circuits and compromise the brain functions, even when seizures are absent. Although memory impairment is a common comorbidity found in patients with epilepsy, it is still unclear whether more caudal structures may play a role in cognitive deficits, particularly in those cases where there is no evidence of hippocampal sclerosis. This work used a genetically selected rat strain for seizure susceptibility (Wistar audiogenic rat, WAR) and distinct behavioral (motor and memory-related tasks) and electrophysiological (inferior colliculus, IC) approaches to access acoustic primary integrative network properties. The IC neural assemblies' response was evaluated by auditory transient (focusing on bottom-up processing) and steady-state evoked response (ASSR, centering on feedforward and feedback forces over neural circuitry). The results show that WAR displayed no disturbance in motor performance or hippocampus-dependent memory tasks. Nonetheless, WAR animals exhibited significative impairment for auditory fear conditioning (AFC) along with no indicative of IC plastic changes between the pre-conditioning and test phases (ASSR coherence analysis). Furthermore, WAR's IC response to transient stimuli presented shorter latency and higher amplitude compared with Wistar; and the ASSR analysis showed similar results for WAR and Wistar animals under subthreshold dose of pentylenetetrazol (pro-convulsive drug) for seizure-induction. Our work demonstrated alterations at WAR IC neural network processing, which may explain the associated disturbance on AFC memory.

2.
Cereb Cortex ; 26(5): 1866-1877, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609241

RESUMO

Inputting information to the brain through direct electrical microstimulation must consider how underlying neural networks encode information. One unexplored possibility is that a single electrode delivering temporally coded stimuli, mimicking an asynchronous serial communication port to the brain, can trigger the emergence of different brain states. This work used a discriminative fear-conditioning paradigm in rodents in which 2 temporally coded microstimulation patterns were targeted at the amygdaloid complex. Each stimulus was a binary-coded "word" made up of 10 ms bins, with 1's representing a single pulse stimulus: A-1001111001 and B-1110000111. During 3 consecutive retention tests (i.e., day-word: 1-B; 2-A, and 3-B), only binary-coded words previously paired with a foot-electroshock elicited proper aversive behavior. To determine the neural substrates recruited by the different stimulation patterns, c-Fos expression was evaluated 90 min after the last retention test. Animals conditioned to word-B, after stimulation with word-B, demonstrated increased hypothalamic c-Fos staining. Animals conditioned to word-A, however, showed increased prefrontal c-Fos labeling. In addition, prefrontal-cortex and hypothalamic c-Fos staining for, respectively, word-B- and word-A-conditioned animals, was not different than that of an unpaired control group. Our results suggest that, depending on the valence acquired from previous learning, temporally coded microstimulation activates distinct neural networks and associated behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/fisiologia , Eletrochoque , Medo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
3.
J Neurochem ; 131(1): 65-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903976

RESUMO

The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro-apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis-inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.


Assuntos
Fator de Indução de Apoptose/metabolismo , Caspases/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Peso Corporal/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA